Davies K J, Doroshow J H
J Biol Chem. 1986 Mar 5;261(7):3060-7.
In the present study we have used beef heart submitochondrial preparations (BH-SMP) to demonstrate that a component of mitochondrial Complex I, probably the NADH dehydrogenase flavin, is the mitochondrial site of anthracycline reduction. During forward electron transport, the anthracyclines doxorubicin (Adriamycin) and daunorubicin acted as one-electron acceptors for BH-SMP (i.e. were reduced to semiquinone radical species) only when NADH was used as substrate; succinate and ascorbate were without effect. Inhibitor experiments (rotenone, amytal, piericidin A) indicated that the anthracycline reduction site lies on the substrate side of ubiquinone. Doxorubicin and daunorubicin semiquinone radicals were readily detected by ESR spectroscopy. Doxorubicin and daunorubicin semiquinone radicals (g congruent to 2.004, signal width congruent to 4.5 G) reacted avidly with molecular oxygen, presumably to produce O2-, to complete the redox cycle. The identification of Complex I as the site of anthracycline reduction was confirmed by studies of ATP-energized reverse electron transport using succinate or ascorbate as substrates, in the presence of antimycin A or KCN respiratory blocks. Doxorubicin and daunorubicin inhibited the reduction of NAD+ to NADH during reverse electron transport. Furthermore, during reverse electron transport in the absence of added NAD+, doxorubicin and daunorubicin addition caused oxygen consumption due to reduction of molecular oxygen (to O2-) by the anthracycline semiquinone radicals. With succinate as electron source both thenoyltrifluoroacetone (an inhibitor of Complex II) and rotenone blocked oxygen consumption, but with ascorbate as electron source only rotenone was an effective inhibitor. NADH oxidation by doxorubicin during BH-SMP forward electron transport had a KM of 99 microM and a Vmax of 30 nmol X min-1 X mg-1 (at pH 7.4 and 23 degrees C); values for daunorubicin were 71 microM and 37 nmol X min-1 X mg-1. Oxygen consumption at pH 7.2 and 37 degrees C exhibited KM values of 65 microM for doxorubicin and 47 microM for daunorubicin, and Vmax values of 116 nmol X min-1 X mg-1 for doxorubicin and 114 nmol X min-1 X mg-1 for daunorubicin. In marked contrast with these results, 5-iminodaunodrubicin (a new anthracycline with diminished cardiotoxic potential) exhibited little or no tendency to undergo reduction, or to redox cycle with BH-SMP. Redox cycling of anthracyclines by mitochondrial NADH dehydrogenase is shown, in the accompanying paper (Doroshow, J. H., and Davies, K. J. A. (1986) J. Biol. Chem. 261, 3068-3074), to generate O2-, H2O2, and OH which may underlie the cardiotoxicity of these antitumor agents.
在本研究中,我们使用牛心亚线粒体制剂(BH-SMP)来证明线粒体复合体I的一个成分,可能是NADH脱氢酶黄素,是蒽环类药物还原的线粒体部位。在正向电子传递过程中,蒽环类药物阿霉素(阿霉素)和柔红霉素仅在以NADH为底物时才作为BH-SMP的单电子受体(即被还原为半醌自由基);琥珀酸和抗坏血酸则无作用。抑制剂实验(鱼藤酮、戊巴比妥、粉蝶霉素A)表明蒽环类药物还原部位位于泛醌的底物侧。通过电子自旋共振光谱很容易检测到阿霉素和柔红霉素半醌自由基。阿霉素和柔红霉素半醌自由基(g约为2.004,信号宽度约为4.5 G)与分子氧剧烈反应,推测生成超氧阴离子(O2-),以完成氧化还原循环。通过使用琥珀酸或抗坏血酸作为底物、在存在抗霉素A或KCN呼吸阻断剂的情况下进行ATP驱动的反向电子传递研究,证实了复合体I是蒽环类药物还原的部位。阿霉素和柔红霉素在反向电子传递过程中抑制NAD+还原为NADH。此外,在不添加NAD+的情况下进行反向电子传递时,添加阿霉素和柔红霉素会因蒽环类药物半醌自由基将分子氧还原为O2-而导致耗氧。以琥珀酸作为电子源时,噻吩甲酰三氟丙酮(复合体II的抑制剂)和鱼藤酮均阻断耗氧,但以抗坏血酸作为电子源时只有鱼藤酮是有效的抑制剂。在BH-SMP正向电子传递过程中,阿霉素对NADH氧化的KM为99 microM,Vmax为30 nmol·min-1·mg-1(在pH 7.4和23℃时);柔红霉素的值分别为71 microM和37 nmol·min-1·mg-1。在pH 7.2和37℃时的耗氧显示,阿霉素的KM值为65 microM,柔红霉素为47 microM,阿霉素的Vmax值为116 nmol·min-1·mg-1,柔红霉素为114 nmol·min-1·mg-1。与这些结果形成显著对比的是,5-亚氨基柔红霉素(一种心脏毒性潜力降低的新型蒽环类药物)几乎没有或没有表现出被还原或与BH-SMP进行氧化还原循环的倾向。随附论文(Doroshow, J. H., and Davies, K. J. A. (1986) J. Biol. Chem. 261, 3068 - 3074)表明,线粒体NADH脱氢酶对蒽环类药物的氧化还原循环会生成O2-、H2O2和OH,这可能是这些抗肿瘤药物心脏毒性的基础。