Suppr超能文献

多铁性氧化物BFCNT/BFCO异质结黑硅光伏器件。

Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices.

作者信息

Guo Kaixin, Wang Xu, Zhang Rongfen, Fu Zhao, Zhang Liangyu, Ma Guobin, Deng Chaoyong

机构信息

Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.

Guizhou College of Electronic Science and Technology, Guiyang, 561113, Guizhou, China.

出版信息

Light Sci Appl. 2021 Sep 26;10(1):201. doi: 10.1038/s41377-021-00644-0.

Abstract

Multiferroics are being studied increasingly in applications of photovoltaic devices for the carrier separation driven by polarization and magnetization. In this work, textured black silicon photovoltaic devices are fabricated with BiFeCoNiTiO/BiFeCrO (BFCNT/BFCO) multiferroic heterojunction as an absorber and graphene as an anode. The structural and optical analyses showed that the bandgap of Aurivillius-typed BFCNT and double perovskite BFCO are 1.62 ± 0.04 eV and 1.74 ± 0.04 eV respectively, meeting the requirements for the active layer in solar cells. Under the simulated AM 1.5 G illumination, the black silicon photovoltaic devices delivered a photoconversion efficiency (η) of 3.9% with open-circuit voltage (V), short-circuit current density (J), and fill factor (FF) of 0.75 V, 10.8 mA cm, and 48.3%, respectively. Analyses of modulation of an applied electric and magnetic field on the photovoltaic properties revealed that both polarization and magnetization of multiferroics play an important role in tuning the built-in electric field and the transport mechanisms of charge carriers, thus providing a new idea for the design of future high-performance multiferroic oxide photovoltaic devices.

摘要

多铁性材料在用于极化和磁化驱动载流子分离的光伏器件应用中受到越来越多的研究。在这项工作中,制备了具有BiFeCoNiTiO/BiFeCrO(BFCNT/BFCO)多铁性异质结作为吸收体和石墨烯作为阳极的织构化黑硅光伏器件。结构和光学分析表明,奥里维利乌斯型BFCNT和双钙钛矿BFCO的带隙分别为1.62±0.04 eV和1.74±0.04 eV,满足太阳能电池活性层的要求。在模拟的AM 1.5 G光照下,黑硅光伏器件的光电转换效率(η)为3.9%,开路电压(V)、短路电流密度(J)和填充因子(FF)分别为0.75 V、10.8 mA cm和48.3%。对施加的电场和磁场对光伏性能的调制分析表明,多铁性材料的极化和磁化在调节内建电场和电荷载流子的传输机制方面都起着重要作用,从而为未来高性能多铁性氧化物光伏器件的设计提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/8473570/5a6b1ce1aa40/41377_2021_644_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验