Suppr超能文献

驱动肌肉感觉神经元对伤害性刺激反应的关键因素的鉴定

Identification of Key Factors Driving the Response of Muscle Sensory Neurons to Noxious Stimuli.

作者信息

Nagaraja Sridevi, Queme Luis F, Hofmann Megan C, Tewari Shivendra G, Jankowski Michael P, Reifman Jaques

机构信息

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.

出版信息

Front Neurosci. 2021 Sep 10;15:719735. doi: 10.3389/fnins.2021.719735. eCollection 2021.

Abstract

Nociceptive nerve endings embedded in muscle tissue transduce peripheral noxious stimuli into an electrical signal [i.e., an action potential (AP)] to initiate pain sensations. A major contributor to nociception from the muscles is mechanosensation. However, due to the heterogeneity in the expression of proteins, such as ion channels, pumps, and exchangers, on muscle nociceptors, we currently do not know the relative contributions of different proteins and signaling molecules to the neuronal response due to mechanical stimuli. In this study, we employed an integrated approach combining a customized experimental study in mice with a computational model to identify key proteins that regulate mechanical nociception in muscles. First, using newly collected data from somatosensory recordings in mouse hindpaw muscles, we developed and then validated a computational model of a mechanosensitive mouse muscle nociceptor. Next, by performing global sensitivity analyses that simulated thousands of nociceptors, we identified three ion channels (among the 17 modeled transmembrane proteins and four endoplasmic reticulum proteins) as potential regulators of the nociceptor response to mechanical forces in both the innocuous and noxious range. Moreover, we found that simulating single knockouts of any of the three ion channels, delayed rectifier voltage-gated K channel (Kv1.1) or mechanosensitive channels Piezo2 or TRPA1, considerably altered the excitability of the nociceptor (i.e., each knockout increased or decreased the number of triggered APs compared to when all channels were present). These results suggest that altering expression of the gene encoding Kv1.1, Piezo2, or TRPA1 might regulate the response of mechanosensitive muscle nociceptors.

摘要

嵌入肌肉组织的伤害性神经末梢将外周有害刺激转化为电信号[即动作电位(AP)],以引发疼痛感觉。肌肉伤害感受的一个主要因素是机械感觉。然而,由于肌肉伤害感受器上蛋白质(如离子通道、泵和交换器)表达的异质性,我们目前尚不清楚不同蛋白质和信号分子对机械刺激引起的神经元反应的相对贡献。在本研究中,我们采用了一种综合方法,将定制的小鼠实验研究与计算模型相结合,以识别调节肌肉机械伤害感受的关键蛋白质。首先,利用从小鼠后爪肌肉体感记录中最新收集的数据,我们开发并验证了一个机械敏感小鼠肌肉伤害感受器的计算模型。接下来,通过进行模拟数千个伤害感受器的全局敏感性分析,我们确定了三种离子通道(在17种模拟的跨膜蛋白和四种内质网蛋白中)作为伤害感受器在无害和有害范围内对机械力反应的潜在调节因子。此外,我们发现模拟三种离子通道中的任何一种单基因敲除,即延迟整流电压门控钾通道(Kv1.1)或机械敏感通道Piezo2或TRPA1,会显著改变伤害感受器的兴奋性(即与所有通道都存在时相比,每种基因敲除都会增加或减少触发动作电位的数量)。这些结果表明,改变编码Kv1.1、Piezo2或TRPA1的基因表达可能会调节机械敏感肌肉伤害感受器的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caef/8461020/9687cd416bbe/fnins-15-719735-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验