文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MONTI: A Multi-Omics Non-negative Tensor Decomposition Framework for Gene-Level Integrative Analysis.

作者信息

Jung Inuk, Kim Minsu, Rhee Sungmin, Lim Sangsoo, Kim Sun

机构信息

Department of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea.

Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States.

出版信息

Front Genet. 2021 Sep 10;12:682841. doi: 10.3389/fgene.2021.682841. eCollection 2021.


DOI:10.3389/fgene.2021.682841
PMID:34567063
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8461247/
Abstract

Multi-omics data is frequently measured to enrich the comprehension of biological mechanisms underlying certain phenotypes. However, due to the complex relations and high dimension of multi-omics data, it is difficult to associate omics features to certain biological traits of interest. For example, the clinically valuable breast cancer subtypes are well-defined at the molecular level, but are poorly classified using gene expression data. Here, we propose a multi-omics analysis method called MONTI (Multi-Omics Non-negative Tensor decomposition for Integrative analysis), which goal is to select multi-omics features that are able to represent trait specific characteristics. Here, we demonstrate the strength of multi-omics integrated analysis in terms of cancer subtyping. The multi-omics data are first integrated in a biologically meaningful manner to form a three dimensional tensor, which is then decomposed using a non-negative tensor decomposition method. From the result, MONTI selects highly informative subtype specific multi-omics features. MONTI was applied to three case studies of 597 breast cancer, 314 colon cancer, and 305 stomach cancer cohorts. For all the case studies, we found that the subtype classification accuracy significantly improved when utilizing all available multi-omics data. MONTI was able to detect subtype specific gene sets that showed to be strongly regulated by certain omics, from which correlation between omics types could be inferred. Furthermore, various clinical attributes of nine cancer types were analyzed using MONTI, which showed that some clinical attributes could be well explained using multi-omics data. We demonstrated that integrating multi-omics data in a gene centric manner improves detecting cancer subtype specific features and other clinical features, which may be used to further understand the molecular characteristics of interest. The software and data used in this study are available at: https://github.com/inukj/MONTI.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/84c4cc9e68d5/fgene-12-682841-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/fa5d88831d67/fgene-12-682841-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/83ab0e29d59e/fgene-12-682841-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/f8364bc7d367/fgene-12-682841-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/6991df4ae046/fgene-12-682841-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/ea7175697ab8/fgene-12-682841-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/5ff674754bbc/fgene-12-682841-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/16696779efbd/fgene-12-682841-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/2c1be54cbe86/fgene-12-682841-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/6df8b12bb387/fgene-12-682841-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/d0b050e51dcc/fgene-12-682841-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/256e20fee4d9/fgene-12-682841-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/84c4cc9e68d5/fgene-12-682841-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/fa5d88831d67/fgene-12-682841-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/83ab0e29d59e/fgene-12-682841-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/f8364bc7d367/fgene-12-682841-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/6991df4ae046/fgene-12-682841-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/ea7175697ab8/fgene-12-682841-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/5ff674754bbc/fgene-12-682841-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/16696779efbd/fgene-12-682841-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/2c1be54cbe86/fgene-12-682841-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/6df8b12bb387/fgene-12-682841-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/d0b050e51dcc/fgene-12-682841-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/256e20fee4d9/fgene-12-682841-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e40/8461247/84c4cc9e68d5/fgene-12-682841-g0012.jpg

相似文献

[1]
MONTI: A Multi-Omics Non-negative Tensor Decomposition Framework for Gene-Level Integrative Analysis.

Front Genet. 2021-9-10

[2]
Corrigendum: MONTI: A Multi-Omics Non-Negative Tensor Decomposition Framework for Gene-Level Integrative Analysis.

Front Genet. 2021-10-25

[3]
Novel feature selection method via kernel tensor decomposition for improved multi-omics data analysis.

BMC Med Genomics. 2022-2-24

[4]
HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[5]
BioSTD: A New Tensor Multi-View Framework via Combining Tensor Decomposition and Strong Complementarity Constraint for Analyzing Cancer Omics Data.

IEEE J Biomed Health Inform. 2023-10

[6]
Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes.

Bioinform Adv. 2023-6-21

[7]
Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.

Comput Biol Med. 2022-9

[8]
MOPA: An integrative multi-omics pathway analysis method for measuring omics activity.

PLoS One. 2023

[9]
Cancer subtype identification by multi-omics clustering based on interpretable feature and latent subspace learning.

Methods. 2024-11

[10]
Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis.

Front Genet. 2021-7-22

引用本文的文献

[1]
A review on multi-omics integration for aiding study design of large scale TCGA cancer datasets.

BMC Genomics. 2025-8-22

[2]
C-ziptf: stable tensor factorization for zero-inflated multi-dimensional genomics data.

BMC Bioinformatics. 2024-10-5

[3]
A primer on correlation-based dimension reduction methods for multi-omics analysis.

J R Soc Interface. 2023-10

[4]
GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype.

Bioinformatics. 2023-10-3

[5]
MOPA: An integrative multi-omics pathway analysis method for measuring omics activity.

PLoS One. 2023

本文引用的文献

[1]
MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data.

Genome Biol. 2020-5-11

[2]
Multi-omics Data Integration, Interpretation, and Its Application.

Bioinform Biol Insights. 2020-1-31

[3]
Comprehensive analysis of prognosis-related methylated sites in breast carcinoma.

Mol Genet Genomic Med. 2020-4

[4]
A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping.

Brief Bioinform. 2020-12-1

[5]
miRDB: an online database for prediction of functional microRNA targets.

Nucleic Acids Res. 2020-1-8

[6]
Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data.

Genes (Basel). 2019-3-7

[7]
Quantitative Proteomic Analysis Identifies MAPK15 as a Potential Regulator of Radioresistance in Nasopharyngeal Carcinoma Cells.

Front Oncol. 2018-11-22

[8]
Comprehensive and critical evaluation of individualized pathway activity measurement tools on pan-cancer data.

Brief Bioinform. 2020-1-17

[9]
Classifying tumors by supervised network propagation.

Bioinformatics. 2018-7-1

[10]
Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets.

Mol Syst Biol. 2018-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索