Suppr超能文献

印度六个主要受影响邦新冠疫情的预测以及与温度的两阶段变化

Prediction of COVID-19 pervasiveness in six major affected states of India and two-stage variation with temperature.

作者信息

Singh Sarbjit, Parmar Kulwinder Singh, Kaur Jatinder, Kumar Jatinder, Makkhan Sidhu Jitendra Singh

机构信息

Guru Nanak Dev University College, Narot Jaimal Singh, Pathankot, Punjab 145026 India.

Department of Mathematics, Guru Nanak Dev University, Amritsar, Punjab 143005 India.

出版信息

Air Qual Atmos Health. 2021;14(12):2079-2090. doi: 10.1007/s11869-021-01075-x. Epub 2021 Sep 21.

Abstract

Coronavirus disease knocked in Wuhan city of China in December 2019 which spread quickly across the world and infected millions of people within a short span of time. COVID-19 is a fast-spreading contagious disease which is caused by SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2). Accurate time series forecasting modeling is the need of the hour to monitor and control the universality of COVID-19 effectively, which will help to take preventive measures to break the ongoing chain of infection. India is the second highly populated country in the world and in summer the temperature rises up to 50°, nowadays in many states have more than 40° temperatures. The present study deals with the development of the autoregressive integrated moving average (ARIMA) model to predict the trend of the number of COVID-19 infected people in most affected states of India and the effect of a rise in temperature on COVID-19 cases. Cumulative data of COVID-19 confirmed cases are taken for study which consists of 77 sample points ranging from 1st March 2020 to 16th May 2020 from six states of India namely Delhi (Capital of India), Madya Pradesh, Maharashtra, Punjab, Rajasthan, and Uttar Pradesh. The developed ARIMA model is further used to make 1-month ahead out of sample predictions for COVID-19. The performance of ARIMA models is estimated by comparing measures of errors for these six states which will help in understanding future trends of COVID-19 outbreak. Temperature rise shows slightly negatively correlated with the rise in daily cases. This study is noble to analyse the variation of COVID-19 cases with respect to temperature and make aware of the state governments and take precautionary measures to flatten the growth curve of confirmed cases of COVID-19 infections in other states of India, nearby countries as well.

摘要

2019年12月,冠状病毒病在中国武汉市出现,迅速蔓延至全球,在短时间内感染了数百万人。COVID-19是一种快速传播的传染病,由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起。准确的时间序列预测模型是当前有效监测和控制COVID-19传播的迫切需求,这将有助于采取预防措施来打破正在进行的感染链。印度是世界上人口第二多的国家,夏季气温高达50°,如今许多邦的气温超过40°。本研究旨在开发自回归积分移动平均(ARIMA)模型,以预测印度受影响最严重邦的COVID-19感染人数趋势以及气温上升对COVID-19病例的影响。研究采用了COVID-19确诊病例的累计数据,这些数据包含从2020年3月1日至2020年5月16日来自印度六个邦(即印度首都德里、中央邦、马哈拉施特拉邦、旁遮普邦、拉贾斯坦邦和北方邦)的77个样本点。所开发的ARIMA模型进一步用于对COVID-19进行提前1个月的样本外预测。通过比较这六个邦的误差度量来评估ARIMA模型的性能,这将有助于了解COVID-19疫情的未来趋势。气温上升与每日病例数的增加呈略微负相关。本研究对于分析COVID-19病例随温度的变化情况具有重要意义,并能让邦政府有所警觉,采取预防措施以使印度其他邦以及周边国家的COVID-19感染确诊病例的增长曲线趋于平缓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f2e/8453038/365e559acc66/11869_2021_1075_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验