Suppr超能文献

离散小波分解与自回归积分移动平均(ARIMA)模型的新型混合模型在预测新冠肺炎一个月伤亡病例中的应用开发。

Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19.

作者信息

Singh Sarbjit, Parmar Kulwinder Singh, Kumar Jatinder, Makkhan Sidhu Jitendra Singh

机构信息

Guru Nanak Dev University College, Narot Jaimal Singh, Pathankot, Punjab,145026, India.

Department of Mathematics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.

出版信息

Chaos Solitons Fractals. 2020 Jun;135:109866. doi: 10.1016/j.chaos.2020.109866. Epub 2020 May 11.

Abstract

Everywhere around the globe, the hot topic of discussion today is the ongoing and fast-spreading coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Earlier detected in Wuhan, Hubei province, in China in December 2019, the deadly virus engulfed China and some neighboring countries, which claimed thousands of lives in February 2020. The proposed hybrid methodology involves the application of discreet wavelet decomposition to the dataset of deaths due to COVID-19, which splits the input data into component series and then applying an appropriate econometric model to each of the component series for making predictions of death cases in future. ARIMA models are well known econometric forecasting models capable of generating accurate forecasts when applied on wavelet decomposed time series. The input dataset consists of daily death cases from most affected five countries by COVID-19, which is given to the hybrid model for validation and to make one month ahead prediction of death cases. These predictions are compared with that obtained from an ARIMA model to estimate the performance of prediction. The predictions indicate a sharp rise in death cases despite various precautionary measures taken by governments of these countries.

摘要

在全球各地,如今讨论的热门话题是持续且迅速传播的冠状病毒病(COVID-19),它由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起。2019年12月在中国湖北省武汉市首次被发现,这种致命病毒席卷了中国及一些邻国,在2020年2月造成数千人死亡。所提出的混合方法涉及将离散小波分解应用于COVID-19死亡病例数据集,该方法将输入数据分解为分量序列,然后对每个分量序列应用适当的计量经济模型来预测未来的死亡病例。自回归积分移动平均(ARIMA)模型是著名的计量经济预测模型,当应用于小波分解后的时间序列时能够产生准确的预测。输入数据集由受COVID-19影响最严重的五个国家的每日死亡病例组成,将其提供给混合模型进行验证,并对死亡病例进行提前一个月的预测。将这些预测与从ARIMA模型获得的预测进行比较,以评估预测性能。预测表明,尽管这些国家的政府采取了各种预防措施,但死亡病例仍急剧上升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/735c/7211653/347f581cb6a5/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验