Suppr超能文献

预测新诊断的T1-2期非小细胞肺癌淋巴结转移和远处转移的列线图的开发:一项基于人群的分析

Development of Nomograms for Predicting Lymph Node Metastasis and Distant Metastasis in Newly Diagnosed T1-2 Non-Small Cell Lung Cancer: A Population-Based Analysis.

作者信息

Qi Yiming, Wu Shuangshuang, Tao Linghui, Shi Yunfu, Yang Wenjuan, Zhou Lina, Zhang Bo, Li Jing

机构信息

Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China.

Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China.

出版信息

Front Oncol. 2021 Sep 8;11:683282. doi: 10.3389/fonc.2021.683282. eCollection 2021.

Abstract

BACKGROUND

For different lymph node metastasis (LNM) and distant metastasis (DM), the diagnosis, treatment and prognosis of T1-2 non-small cell lung cancer (NSCLC) are different. It is essential to figure out the risk factors and establish prediction models related to LNM and DM.

METHODS

Based on the surveillance, epidemiology, and end results (SEER) database from 1973 to 2015, a total of 43,156 eligible T1-2 NSCLC patients were enrolled in the retrospective study. Logistic regression analysis was used to determine the risk factors of LNM and DM. Risk factors were applied to construct the nomograms of LNM and DM. The predictive nomograms were discriminated against and evaluated by Concordance index (C-index) and calibration plots, respectively. Decision curve analysis (DCAs) was accepted to measure the clinical application of the nomogram. Cumulative incidence function (CIF) was performed further to detect the prognostic role of LNM and DM in NSCLC-specific death (NCSD).

RESULTS

Eight factors (age at diagnosis, race, sex, histology, T-stage, marital status, tumor size, and grade) were significant in predicting LNM and nine factors (race, sex, histology, T-stage, N-stage, marital status, tumor size, grade, and laterality) were important in predicting DM(all, P< 0.05). The calibration curves displayed that the prediction nomograms were effective and discriminative, of which the C-index were 0.723 and 0.808. The DCAs and clinical impact curves exhibited that the prediction nomograms were clinically effective.

CONCLUSIONS

The newly constructed nomograms can objectively and accurately predict LNM and DM in patients suffering from T1-2 NSCLC, which may help clinicians make individual clinical decisions before clinical management.

摘要

背景

对于不同的淋巴结转移(LNM)和远处转移(DM),T1-2期非小细胞肺癌(NSCLC)的诊断、治疗及预后有所不同。明确相关危险因素并建立与LNM和DM相关的预测模型至关重要。

方法

基于1973年至2015年的监测、流行病学及最终结果(SEER)数据库,共有43156例符合条件的T1-2期NSCLC患者纳入本回顾性研究。采用逻辑回归分析确定LNM和DM的危险因素。将危险因素应用于构建LNM和DM的列线图。分别通过一致性指数(C指数)和校准图对预测列线图进行区分和评估。采用决策曲线分析(DCA)衡量列线图的临床应用价值。进一步进行累积发病率函数(CIF)分析,以检测LNM和DM在NSCLC特异性死亡(NCSD)中的预后作用。

结果

八个因素(诊断年龄、种族、性别、组织学类型、T分期、婚姻状况、肿瘤大小和分级)在预测LNM方面具有显著性,九个因素(种族、性别、组织学类型、T分期、N分期、婚姻状况、肿瘤大小、分级和肿瘤位置)在预测DM方面具有重要意义(均P<0.05)。校准曲线显示预测列线图有效且具有区分性,其中C指数分别为0.723和0.808。DCA和临床影响曲线表明预测列线图具有临床有效性。

结论

新构建的列线图能够客观、准确地预测T1-2期NSCLC患者的LNM和DM,这可能有助于临床医生在临床管理前做出个体化的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e2c/8456089/762290104a6e/fonc-11-683282-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验