Suppr超能文献

基于人群的研究:预测新诊断早期食管癌患者淋巴结转移和远处转移的临床模型。

Clinical models to predict lymph nodes metastasis and distant metastasis in newly diagnosed early esophageal cancer patients: A population-based study.

机构信息

Department of Oncology, The 900th Hospital of the People's Liberation Army Joint Service Support Force, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China.

Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China.

出版信息

Cancer Med. 2023 Mar;12(5):5275-5292. doi: 10.1002/cam4.5334. Epub 2022 Oct 7.

Abstract

BACKGROUND

Patients with early esophageal cancer (EC) receive individualized therapy based on their lymph node metastasis (LNM) and distant metastasis (DM) status; however, deficiencies in current clinical staging techniques and the issue of cost-effectiveness mean LNM and DM often go undetected preoperatively. We aimed to develop three clinical models to predict the likelihood of LNM, DM, and prognosis in patients with early EC.

METHOD

The Surveillance, Epidemiology, and End Results database was queried for T1 EC patients from 2004 to 2015. Multivariable logistic regression and Cox proportional hazards models were used to recognize the risk factors of LNM and DM, predict overall survival (OS), and develop relevant nomograms. Receiver operating characteristic (ROC)/concordance index and calibration curves were used to evaluate the discrimination and accuracy of the three nomograms. Decision curve analyses (DCAs), clinical impact curves, and subgroups based on model scores were used to determine clinical practicability.

RESULTS

The area under the curve of the LNM and DM nomograms were 0.668 and 0.807, respectively. The corresponding C-index of OS nomogram was 0.752. Calibration curves and DCA showed an effective predictive accuracy and clinical applicability. In patients with T1N0M0 EC, surgery alone (p < 0.01) proved a survival advantage. Chemotherapy and radiotherapy indicated a better prognosis in the subgroup analysis for T1 EC patients with LNM or DM.

CONCLUSIONS

We created three nomograms to predict the likelihood of LNM, DM, and OS probability in patients with early EC using a generalizable dataset. These useful visual tools could help clinical physicians deliver appropriate perioperative care.

摘要

背景

早期食管癌(EC)患者根据其淋巴结转移(LNM)和远处转移(DM)状态接受个体化治疗;然而,目前临床分期技术的不足和成本效益问题意味着 LNM 和 DM 常常在术前无法被检测到。我们旨在开发三种临床模型来预测早期 EC 患者发生 LNM、DM 和预后的可能性。

方法

从 2004 年至 2015 年,我们在监测、流行病学和最终结果数据库中查询 T1EC 患者。使用多变量逻辑回归和 Cox 比例风险模型来识别 LNM 和 DM 的风险因素,预测总生存期(OS),并开发相关的列线图。接受者操作特征(ROC)/一致性指数和校准曲线用于评估三种列线图的区分度和准确性。决策曲线分析(DCA)、临床影响曲线以及基于模型评分的亚组用于确定临床实用性。

结果

LNM 和 DM 列线图的曲线下面积分别为 0.668 和 0.807,OS 列线图的相应 C 指数为 0.752。校准曲线和 DCA 显示了有效的预测准确性和临床适用性。在 T1N0M0EC 患者中,单独手术(p<0.01)显示出生存优势。对于 T1EC 患者中发生 LNM 或 DM 的亚组分析,化疗和放疗表明预后更好。

结论

我们使用可推广的数据集创建了三种列线图来预测早期 EC 患者发生 LNM、DM 和 OS 概率的可能性。这些有用的可视化工具可以帮助临床医生提供适当的围手术期护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5901/10028124/ca39869ddc75/CAM4-12-5275-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验