Suppr超能文献

利用电子健康记录数据进行肥胖预测:一种具有可解释元素的深度学习方法。

Obesity Prediction with EHR Data: A deep learning approach with interpretable elements.

作者信息

Gupta Mehak, Phan Thao-Ly T, Bunnell H Timothy, Beheshti Rahmatollah

机构信息

University of Delaware, USA.

Nemours Children's Health, USA.

出版信息

ACM Trans Comput Healthc. 2022 Jul;3(3). doi: 10.1145/3506719. Epub 2022 Apr 7.

Abstract

Childhood obesity is a major public health challenge. Early prediction and identification of the children at an elevated risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage obesity. Most existing predictive tools for childhood obesity primarily rely on traditional regression-type methods using only a few hand-picked features and without exploiting longitudinal patterns of children's data. Deep learning methods allow the use of high-dimensional longitudinal datasets. In this paper, we present a deep learning model designed for predicting future obesity patterns from generally available items on children's medical history. To do this, we use a large unaugmented electronic health records dataset from a large pediatric health system in the US. We adopt a general LSTM network architecture and train our proposed model using both static and dynamic EHR data. To add interpretability, we have additionally included an attention layer to calculate the attention scores for the timestamps and rank features of each timestamp. Our model is used to predict obesity for ages between 3-20 years using the data from 1-3 years in advance. We compare the performance of our LSTM model with a series of existing studies in the literature and show it outperforms their performance in most age ranges.

摘要

儿童肥胖是一项重大的公共卫生挑战。对有患儿童肥胖症高风险的儿童进行早期预测和识别,可能有助于更早地采取更有效的干预措施来预防和管理肥胖症。大多数现有的儿童肥胖预测工具主要依赖传统的回归类型方法,只使用少数精心挑选的特征,而没有利用儿童数据的纵向模式。深度学习方法允许使用高维纵向数据集。在本文中,我们提出了一种深度学习模型,旨在根据儿童病历中常见的项目预测未来的肥胖模式。为此,我们使用了来自美国一个大型儿科健康系统的大型未扩充电子健康记录数据集。我们采用通用的长短期记忆网络(LSTM)架构,并使用静态和动态电子健康记录数据训练我们提出的模型。为了增加可解释性,我们还额外加入了一个注意力层,以计算时间戳的注意力分数,并对每个时间戳的特征进行排序。我们的模型使用提前1至3年的数据来预测3至20岁儿童的肥胖情况。我们将长短期记忆模型的性能与文献中的一系列现有研究进行了比较,并表明在大多数年龄范围内,我们的模型性能优于它们。

相似文献

1
Obesity Prediction with EHR Data: A deep learning approach with interpretable elements.
ACM Trans Comput Healthc. 2022 Jul;3(3). doi: 10.1145/3506719. Epub 2022 Apr 7.
2
LSTM Model for Prediction of Heart Failure in Big Data.
J Med Syst. 2019 Mar 19;43(5):111. doi: 10.1007/s10916-019-1243-3.
3
An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction.
Artif Intell Med. 2023 Jan;135:102439. doi: 10.1016/j.artmed.2022.102439. Epub 2022 Nov 3.
4
Predicting hypertension onset from longitudinal electronic health records with deep learning.
JAMIA Open. 2022 Nov 25;5(4):ooac097. doi: 10.1093/jamiaopen/ooac097. eCollection 2022 Dec.
5
De-identifying free text of Japanese electronic health records.
J Biomed Semantics. 2020 Sep 21;11(1):11. doi: 10.1186/s13326-020-00227-9.
6
An Advanced Deep Generative Framework for Temporal Link Prediction in Dynamic Networks.
IEEE Trans Cybern. 2020 Dec;50(12):4946-4957. doi: 10.1109/TCYB.2019.2920268. Epub 2020 Dec 3.
7
An interpretable predictive deep learning platform for pediatric metabolic diseases.
J Am Med Inform Assoc. 2024 May 20;31(6):1227-1238. doi: 10.1093/jamia/ocae049.
8
Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to Intensive care unit.
J Biomed Inform. 2021 Sep;121:103876. doi: 10.1016/j.jbi.2021.103876. Epub 2021 Jul 27.
9
Reliable prediction of childhood obesity using only routinely collected EHRs may be possible.
Obes Pillars. 2024 Sep 10;12:100128. doi: 10.1016/j.obpill.2024.100128. eCollection 2024 Dec.

引用本文的文献

1
Multi-Modal Fusion of Routine Care Electronic Health Records (EHR): A Scoping Review.
Information (Basel). 2025 Jan;16(1). doi: 10.3390/info16010054. Epub 2025 Jan 15.
6
A Review on Deep Learning for Quality of Life Assessment Through the Use of Wearable Data.
IEEE Open J Eng Med Biol. 2025 Jan 14;6:261-268. doi: 10.1109/OJEMB.2025.3526457. eCollection 2025.
7
Human intention recognition for trauma resuscitation: An interpretable deep learning approach for medical process data.
J Biomed Inform. 2025 Jan;161:104767. doi: 10.1016/j.jbi.2024.104767. Epub 2024 Dec 31.
8
Robust identification key predictors of short- and long-term weight status in children and adolescents by machine learning.
Front Public Health. 2024 Sep 24;12:1414046. doi: 10.3389/fpubh.2024.1414046. eCollection 2024.
10
Reliable prediction of childhood obesity using only routinely collected EHRs may be possible.
Obes Pillars. 2024 Sep 10;12:100128. doi: 10.1016/j.obpill.2024.100128. eCollection 2024 Dec.

本文引用的文献

2
Predicting Progression Patterns of Type 2 Diabetes using Multi-sensor Measurements.
Smart Health (Amst). 2021 Jul;21. doi: 10.1016/j.smhl.2021.100206. Epub 2021 Jun 12.
3
Machine Learning Models to Predict Childhood and Adolescent Obesity: A Review.
Nutrients. 2020 Aug 16;12(8):2466. doi: 10.3390/nu12082466.
4
Accelerated weight gain, prematurity, and the risk of childhood obesity: A meta-analysis and systematic review.
PLoS One. 2020 May 5;15(5):e0232238. doi: 10.1371/journal.pone.0232238. eCollection 2020.
5
Obesity in achondroplasia patients: from evidence to medical monitoring.
Orphanet J Rare Dis. 2019 Nov 14;14(1):253. doi: 10.1186/s13023-019-1247-6.
7
Predicting childhood obesity using electronic health records and publicly available data.
PLoS One. 2019 Apr 22;14(4):e0215571. doi: 10.1371/journal.pone.0215571. eCollection 2019.
8
LSTM Model for Prediction of Heart Failure in Big Data.
J Med Syst. 2019 Mar 19;43(5):111. doi: 10.1007/s10916-019-1243-3.
9
Obesity hypoventilation syndrome.
Eur Respir Rev. 2019 Mar 14;28(151). doi: 10.1183/16000617.0097-2018. Print 2019 Mar 31.
10
Obesity and dyslipidemia.
Metabolism. 2019 Mar;92:71-81. doi: 10.1016/j.metabol.2018.11.005. Epub 2018 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验