Gupta Mehak, Phan Thao-Ly T, Bunnell H Timothy, Beheshti Rahmatollah
University of Delaware, USA.
Nemours Children's Health, USA.
ACM Trans Comput Healthc. 2022 Jul;3(3). doi: 10.1145/3506719. Epub 2022 Apr 7.
Childhood obesity is a major public health challenge. Early prediction and identification of the children at an elevated risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage obesity. Most existing predictive tools for childhood obesity primarily rely on traditional regression-type methods using only a few hand-picked features and without exploiting longitudinal patterns of children's data. Deep learning methods allow the use of high-dimensional longitudinal datasets. In this paper, we present a deep learning model designed for predicting future obesity patterns from generally available items on children's medical history. To do this, we use a large unaugmented electronic health records dataset from a large pediatric health system in the US. We adopt a general LSTM network architecture and train our proposed model using both static and dynamic EHR data. To add interpretability, we have additionally included an attention layer to calculate the attention scores for the timestamps and rank features of each timestamp. Our model is used to predict obesity for ages between 3-20 years using the data from 1-3 years in advance. We compare the performance of our LSTM model with a series of existing studies in the literature and show it outperforms their performance in most age ranges.
儿童肥胖是一项重大的公共卫生挑战。对有患儿童肥胖症高风险的儿童进行早期预测和识别,可能有助于更早地采取更有效的干预措施来预防和管理肥胖症。大多数现有的儿童肥胖预测工具主要依赖传统的回归类型方法,只使用少数精心挑选的特征,而没有利用儿童数据的纵向模式。深度学习方法允许使用高维纵向数据集。在本文中,我们提出了一种深度学习模型,旨在根据儿童病历中常见的项目预测未来的肥胖模式。为此,我们使用了来自美国一个大型儿科健康系统的大型未扩充电子健康记录数据集。我们采用通用的长短期记忆网络(LSTM)架构,并使用静态和动态电子健康记录数据训练我们提出的模型。为了增加可解释性,我们还额外加入了一个注意力层,以计算时间戳的注意力分数,并对每个时间戳的特征进行排序。我们的模型使用提前1至3年的数据来预测3至20岁儿童的肥胖情况。我们将长短期记忆模型的性能与文献中的一系列现有研究进行了比较,并表明在大多数年龄范围内,我们的模型性能优于它们。