Dutta Saikat, Pal Sharmistha, Sharma Rakesh K, Panwar Pankaj, Kant Vishav, Khola Om Pal Singh
Amity Institute of Click Chemistry Research & Studies Amity University, Noida 201303, India.
ICAR-Indian Institute of Soil & Water Conservation Research Center Sector 27 A Madhya Marg Chandigarh 160019, India.
ACS Omega. 2021 Sep 8;6(37):23654-23665. doi: 10.1021/acsomega.1c03215. eCollection 2021 Sep 21.
A similarity of metal alloy encapsulation with the micronutrient loading in carbon nanoarchitecture can be fueled by exploring carbon nanocarriers to load micronutrient and controlled delivery for crop biofortification. A wood-derived nanoarchitecture model contains a few-graphene-layer that holds infiltrated alloy nanoparticles. Such wood-driven carbonized framework materials with legions of open porous architectures and minimized-tortuosity units further decorated carbon nanotubes (CNTs), which originate from heat treatment to carbonized wood samples. These wood-derived samples can alleviate micronutrient nanoparticle permeation and delivery to the soil. A rapid heat shock treatment can help in distributing N-C-NiFe metal alloy encapsulation in carbon frameworks uniformly in that case; higher heating and rapid extinction of heat shock have led to formation of good dispersion of nanoparticles. The wood-carbon framework decorated with metal alloys displays promising electrocatalytic features and cyclic stability for hydrogen evolution. Envisaged from this strategy, we obtain enough evidence to form an opinion that a singular heat shock process can even lead to a strategy of faster growth of a wood-carbon network with well-dispersed micronutrient metal salts in porous matrices for high-efficiency delivery to the soil. Having envisaged the formation of ultrafine nanoparticles with a good dispersion profile in the case of transition metals and alloy encapsulation in the carbon network due to the rapid heating and quenching rates, we anticipate that the loading of micronutrients in the wood-derived nanoarchitecture of carbonized wood derived carbon nanotube (CW-CNT), which can offer an application in seed germination and enhance growth rates of crops. The experience of controlled experiments on germination of tomato seeds on a medium containing CW-CNT that can diffuse the seed coat with the promotion of water uptake inside seeds for enhanced germination and growth of tomato seedlings can be further extended to cereal crops.
通过探索碳纳米载体来负载微量营养素并实现可控释放以促进作物生物强化,可以推动金属合金封装与碳纳米结构中微量营养素负载的相似性。一种源自木材的纳米结构模型包含几层石墨烯,其中容纳了渗透的合金纳米颗粒。这种具有大量开放多孔结构和最小曲折单元的木材驱动的碳化骨架材料进一步修饰了碳纳米管(CNT),这些碳纳米管源自对碳化木材样品的热处理。这些源自木材的样品可以减轻微量营养素纳米颗粒向土壤的渗透和释放。在这种情况下,快速热休克处理有助于将N-C-NiFe金属合金封装均匀地分布在碳骨架中;较高的加热温度和快速的热休克熄灭导致纳米颗粒形成良好的分散。用金属合金装饰的木材-碳骨架显示出有前景的电催化特性和析氢循环稳定性。从这一策略可以看出,我们有足够的证据形成一种观点,即单一的热休克过程甚至可以导致一种策略,即更快地生长具有在多孔基质中良好分散的微量营养素金属盐的木材-碳网络,以高效地输送到土壤中。鉴于由于快速的加热和淬火速率,在过渡金属和碳网络中的合金封装情况下形成了具有良好分散分布的超细纳米颗粒,我们预计在碳化木材衍生的碳纳米管(CW-CNT)的木材衍生纳米结构中负载微量营养素,这可以应用于种子萌发并提高作物的生长速率。在含有CW-CNT的培养基上对番茄种子发芽进行的对照实验经验表明,CW-CNT可以促进种子吸收水分,使种子皮扩散,从而增强番茄幼苗的发芽和生长,这一经验可以进一步扩展到谷类作物。