Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.
Departments of Electrical Engineering and Chemistry, University of South California, 3710 McClintock Avenue, Los Angeles, California 90089, United States.
Nano Lett. 2021 Oct 13;21(19):8017-8024. doi: 10.1021/acs.nanolett.1c02257. Epub 2021 Sep 27.
Nanoscale oxide layer protected semiconductor photoelectrodes show enhanced stability and performance for solar fuels generation, although the mechanism for the performance enhancement remains unclear due to a lack of understanding of the microscopic interfacial field and its effects. Here, we directly probe the interfacial fields at p-GaP electrodes protected by n-TiO and its effect on charge carriers by transient reflectance spectroscopy. Increasing the TiO layer thickness from 0 to 35 nm increases the field in the GaP depletion region, enhancing the rate and efficiency of interfacial electron transfer from the GaP to TiO on the ps time scale as well as retarding interfacial recombination on the microsecond time scale. This study demonstrates a general method for providing a microscopic view of the photogenerated charge carrier's pathway and loss mechanisms from the bulk of the electrode to the long-lived separated charge at the interface that ultimately drives the photoelectrochemical reactions.
纳米级氧化层保护的半导体光电 极在太阳能燃料生成方面表现出增强的稳定性和性能,尽管由于缺乏对微观界面场及其影响的理解,性能增强的机制仍不清楚。在这里,我们通过瞬态反射光谱直接探测受 n-TiO 保护的 p-GaP 电极的界面场及其对载流子的影响。将 TiO 层厚度从 0 增加到 35nm 会增加 GaP 耗尽区中的电场,从而提高 GaP 向 TiO 的界面电子转移的速率和效率,同时在微秒时间尺度上延迟界面复合。这项研究证明了一种从电极体到界面上长寿命分离电荷的光生载流子路径和损耗机制的微观观察的一般方法,这最终驱动了光电化学反应。