Suppr超能文献

直接测量 TiO2 保护的 GaP 光电阴极中电荷分离和质子还原的量子效率。

Direct Measurement of Quantum Efficiencies of Charge Separation and Proton Reduction at TiO-Protected GaP Photocathodes.

机构信息

Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, Georgia30322, United States.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang310014, China.

出版信息

J Am Chem Soc. 2023 Feb 8;145(5):2860-2869. doi: 10.1021/jacs.2c10578. Epub 2023 Jan 30.

Abstract

Photoelectrochemical solar fuel generation at the semiconductor/liquid interface consists of multiple elementary steps, including charge separation, recombination, and catalytic reactions. While the overall incident light-to-current conversion efficiency (IPCE) can be readily measured, identifying the microscopic efficiency loss processes remains difficult. Here, we report simultaneous transient photocurrent and transient reflectance spectroscopy (TRS) measurements of titanium dioxide-protected gallium phosphide photocathodes for water reduction in photoelectrochemical cells. Transient reflectance spectroscopy enables the direct probe of the separated charge carriers responsible for water reduction to follow their kinetics. Comparison with transient photocurrent measurement allows the direct probe of the initial charge separation quantum efficiency (ϕ) and provides support for a transient photocurrent model that divides IPCE into the product of quantum efficiencies of light absorption (ϕ), charge separation (ϕ), and photoreduction (ϕ), ., IPCE = ϕϕϕ. Our study shows that there are two general key loss pathways: recombination within the bulk GaP that reduces ϕ and interfacial recombination at the junction that decreases ϕ. Although both loss pathways can be reduced at a more negative applied bias, for GaP/TiO, the initial charge separation loss is the key efficiency limiting factor. Our combined transient reflectance and photocurrent study provides a time-resolved view of microscopic steps involved in the overall light-to-current conversion process and provides detailed insights into the main loss pathways of the photoelectrochemical system.

摘要

半导体/液体界面的光电化学太阳能燃料生成由多个基本步骤组成,包括电荷分离、复合和催化反应。虽然总入射光电流转换效率(IPCE)可以很容易地测量,但确定微观效率损失过程仍然很困难。在这里,我们报告了在光电化学电池中同时进行的钛保护的磷化镓光阴极还原水的瞬态光电流和瞬态反射光谱(TRS)测量。瞬态反射光谱能够直接探测到负责还原水的分离电荷载流子,以跟踪它们的动力学。与瞬态光电流测量的比较允许直接探测初始电荷分离量子效率(ϕ),并为瞬态光电流模型提供支持,该模型将 IPCE 分为光吸收(ϕ)、电荷分离(ϕ)和光还原(ϕ)的量子效率的乘积。我们的研究表明,存在两种一般的关键损耗途径:在 GaP 体内部的复合会降低 ϕ,在结处的界面复合会降低 ϕ。虽然在更负的外加偏压下可以降低这两种损耗途径,但对于 GaP/TiO,初始电荷分离损耗是限制效率的关键因素。我们的瞬态反射率和光电流综合研究提供了对整体光电流转换过程中涉及的微观步骤的时间分辨视图,并深入了解光电化学系统的主要损耗途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验