Program of Kidney and Cardiovascular Diseases, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2 Rd, Guangzhou 510080, China.
Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2 Rd, Guangzhou 510080, China.
Eur Heart J. 2021 Dec 14;42(47):4847-4861. doi: 10.1093/eurheartj/ehab660.
Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis.
Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages.
Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.
我们之前的研究表明,巨噬细胞中 Orai1 储存操纵的 Ca2+ 通道的 Ca2+ 内流通过钙调神经磷酸酶-ASK1 途径而不是经典的钙调神经磷酸酶-活化 T 细胞核因子(NFAT)途径促进泡沫细胞形成和动脉粥样硬化。此外,巨噬细胞中 NFATc3 的上调抑制泡沫细胞形成,表明巨噬细胞 NFATc3 是动脉粥样硬化发生的负调节剂。因此,本研究探讨了巨噬细胞 NFATc3 在动脉粥样硬化发生中的精确作用。
生成巨噬细胞特异性 NFATc3 敲除小鼠以确定 NFATc3 对腺相关病毒突变 PCSK9 诱导的动脉粥样硬化小鼠模型中动脉粥样硬化的影响。人及鼠动脉粥样硬化病变中巨噬细胞 NFATc3 表达降低。此外,动脉粥样硬化患者外周血单核细胞中的 NFATc3 水平与斑块不稳定性呈负相关。此外,NFATc3 在巨噬细胞中的特异性缺失导致动脉粥样硬化斑块形成,而巨噬细胞特异性 NFATc3 转基因小鼠则表现出相反的表型。巨噬细胞中 NFATc3 的缺失通过增强清道夫受体 A(SR-A)和 CD36 介导的脂质摄取促进泡沫细胞形成。NFATc3 可直接靶向并转录上调 miR-204 水平。成熟的 miR-204-5p 通过经典调节抑制 SR-A 表达。出乎意料的是,miR-204-3p 定位于细胞核并抑制 CD36 转录。miR-204 的恢复消除了在巨噬细胞特异性 NFATc3 敲除小鼠中观察到的促动脉粥样硬化表型,而 miR-204 功能的阻断逆转了 NFATc3 在巨噬细胞中的有益作用。
巨噬细胞 NFATc3 上调 miR-204 以降低 SR-A 和 CD36 水平,从而防止泡沫细胞形成和动脉粥样硬化,表明 NFATc3/miR-204 轴可能是动脉粥样硬化的潜在治疗靶点。