Suppr超能文献

EPIsHilbert:基于 Hilbert 曲线编码和迁移学习的增强子-启动子相互作用预测。

EPIsHilbert: Prediction of Enhancer-Promoter Interactions via Hilbert Curve Encoding and Transfer Learning.

机构信息

Department of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Genes (Basel). 2021 Sep 6;12(9):1385. doi: 10.3390/genes12091385.

Abstract

Enhancer-promoter interactions (EPIs) play a significant role in the regulation of gene transcription. However, enhancers may not necessarily interact with the closest promoters, but with distant promoters via chromatin looping. Considering the spatial position relationship between enhancers and their target promoters is important for predicting EPIs. Most existing methods only consider sequence information regardless of spatial information. On the other hand, recent computational methods lack generalization capability across different cell line datasets. In this paper, we propose EPIsHilbert, which uses Hilbert curve encoding and two transfer learning approaches. Hilbert curve encoding can preserve the spatial position information between enhancers and promoters. Additionally, we use visualization techniques to explore important sequence fragments that have a high impact on EPIs and the spatial relationships between them. Transfer learning can improve prediction performance across cell lines. In order to further prove the effectiveness of transfer learning, we analyze the sequence coincidence of different cell lines. Experimental results demonstrate that EPIsHilbert is a state-of-the-art model that is superior to most of the existing methods both in specific cell lines and cross cell lines.

摘要

增强子-启动子相互作用(EPIs)在基因转录调控中起着重要作用。然而,增强子不一定与最近的启动子相互作用,而是通过染色质环与远距离的启动子相互作用。考虑增强子与其靶启动子之间的空间位置关系对于预测 EPIs 很重要。大多数现有方法仅考虑序列信息,而不考虑空间信息。另一方面,最近的计算方法缺乏跨不同细胞系数据集的泛化能力。在本文中,我们提出了 EPIsHilbert,它使用 Hilbert 曲线编码和两种迁移学习方法。Hilbert 曲线编码可以保留增强子和启动子之间的空间位置信息。此外,我们使用可视化技术来探索对 EPIs 及其之间的空间关系有重大影响的重要序列片段。迁移学习可以提高跨细胞系的预测性能。为了进一步证明迁移学习的有效性,我们分析了不同细胞系的序列一致性。实验结果表明,EPIsHilbert 是一种最先进的模型,在特定细胞系和跨细胞系方面均优于大多数现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24b0/8472018/90ba0debec6f/genes-12-01385-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验