Suppr超能文献

南亚次大陆的新冠疫情爆发:基于数据的分析

COVID-19 Pandemic Outbreak in the Subcontinent: A Data Driven Analysis.

作者信息

Singh Bikash Chandra, Alom Zulfikar, Hu Haibo, Rahman Mohammad Muntasir, Baowaly Mrinal Kanti, Aung Zeyar, Azim Mohammad Abdul, Moni Mohammad Ali

机构信息

Department of Information and Communication Technology, Islamic University, Kushtia 7003, Bangladesh.

Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong.

出版信息

J Pers Med. 2021 Sep 7;11(9):889. doi: 10.3390/jpm11090889.

Abstract

Human civilization is experiencing a critical situation that presents itself for a new coronavirus disease 2019 (COVID-19). This virus emerged in late December 2019 in Wuhan city, Hubei, China. The grim fact of COVID-19 is, it is highly contagious in nature, therefore, spreads rapidly all over the world and causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Responding to the severity of COVID-19 research community directs the attention to the analysis of COVID-19, to diminish its antagonistic impact towards society. Numerous studies claim that the subcontinent, i.e., Bangladesh, India, and Pakistan, could remain in the worst affected region by the COVID-19. In order to prevent the spread of COVID-19, it is important to predict the trend of COVID-19 beforehand the planning of effective control strategies. Fundamentally, the idea is to dependably estimate the reproduction number to judge the spread rate of COVID-19 in a particular region. Consequently, this paper uses publicly available epidemiological data of Bangladesh, India, and Pakistan to estimate the reproduction numbers. More specifically, we use various models (for example, susceptible infection recovery (SIR), exponential growth (EG), sequential Bayesian (SB), maximum likelihood (ML) and time dependent (TD)) to estimate the reproduction numbers and observe the model fitness in the corresponding data set. Experimental results show that the reproduction numbers produced by these models are greater than 1.2 (approximately) indicates that COVID-19 is gradually spreading in the subcontinent.

摘要

人类文明正面临着由新型冠状病毒肺炎(COVID-19)引发的严峻形势。这种病毒于2019年12月底在中国湖北省武汉市出现。COVID-19严峻的事实是,它具有高度传染性,因此在全球迅速传播,并引发了严重急性呼吸综合征冠状病毒2(SARS-CoV-2)。为应对COVID-19的严重性,研究界将注意力转向对COVID-19的分析,以减少其对社会的不利影响。众多研究表明,南亚次大陆,即孟加拉国、印度和巴基斯坦,可能仍是受COVID-19影响最严重的地区。为防止COVID-19的传播,在制定有效的控制策略之前预测COVID-19的趋势非常重要。从根本上说,其理念是可靠地估计再生数,以判断COVID-19在特定地区的传播速度。因此,本文利用孟加拉国、印度和巴基斯坦公开的流行病学数据来估计再生数。更具体地说,我们使用各种模型(例如,易感-感染-恢复模型(SIR)、指数增长模型(EG)、序贯贝叶斯模型(SB)、最大似然模型(ML)和时间依赖模型(TD))来估计再生数,并观察相应数据集中的模型拟合情况。实验结果表明,这些模型得出的再生数大于1.2(约),这表明COVID-19正在该次大陆逐渐传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda6/8467040/55012e8a5045/jpm-11-00889-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验