Suppr超能文献

意大利新冠疫情趋势的扩展SIR预测及与中国湖南的比较。

Extended SIR Prediction of the Epidemics Trend of COVID-19 in Italy and Compared With Hunan, China.

作者信息

Wangping Jia, Ke Han, Yang Song, Wenzhe Cao, Shengshu Wang, Shanshan Yang, Jianwei Wang, Fuyin Kou, Penggang Tai, Jing Li, Miao Liu, Yao He

机构信息

Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatrics Diseases, Second Medical Center of Chinese PLA General Hospital, Institute of Geriatrics, Beijing, China.

Department of Military Medical Technology Support, School of Non-commissioned Officer, Army Medical University, Shijiazhuang, China.

出版信息

Front Med (Lausanne). 2020 May 6;7:169. doi: 10.3389/fmed.2020.00169. eCollection 2020.

Abstract

Coronavirus Disease 2019 (COVID-19) is currently a global public health threat. Outside of China, Italy is one of the countries suffering the most with the COVID-19 epidemic. It is important to predict the epidemic trend of the COVID-19 epidemic in Italy to help develop public health strategies. We used time-series data of COVID-19 from Jan 22 2020 to Apr 02 2020. An infectious disease dynamic extended susceptible-infected-removed (eSIR) model, which covers the effects of different intervention measures in dissimilar periods, was applied to estimate the epidemic trend in Italy. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credible interval (CI). Hunan, with a similar total population number to Italy, was used as a comparative item. In the eSIR model, we estimated that the mean of basic reproductive number for COVID-19 was 4.34 (95% CI, 3.04-6.00) in Italy and 3.16 (95% CI, 1.73-5.25) in Hunan. There would be a total of 182 051 infected cases (95%CI:116 114-274 378) under the current country blockade and the endpoint would be Aug 05 in Italy. Italy's current strict measures can efficaciously prevent the further spread of COVID-19 and should be maintained. Necessary strict public health measures should be implemented as soon as possible in other European countries with a high number of COVID-19 cases. The most effective strategy needs to be confirmed in further studies.

摘要

2019冠状病毒病(COVID-19)目前是全球公共卫生威胁。在中国境外,意大利是受COVID-19疫情影响最严重的国家之一。预测意大利COVID-19疫情的流行趋势对于制定公共卫生策略很重要。我们使用了2020年1月22日至2020年4月2日的COVID-19时间序列数据。应用一种传染病动力学扩展的易感-感染-康复(eSIR)模型来估计意大利的疫情趋势,该模型涵盖了不同时期不同干预措施的影响。使用马尔可夫链蒙特卡罗方法估计基本再生数,并使用所得后验均值和95%可信区间(CI)表示。将人口总数与意大利相近的湖南作为对照项。在eSIR模型中,我们估计意大利COVID-19的基本再生数均值为4.34(95%CI,3.04-6.00),湖南为3.16(95%CI,1.73-5.25)。在当前国家封锁措施下,意大利将共有182051例感染病例(95%CI:116114-274378),终点时间为8月5日。意大利目前的严格措施可有效防止COVID-19的进一步传播,应予以维持。其他COVID-19病例数较多的欧洲国家应尽快实施必要的严格公共卫生措施。最有效的策略需要在进一步研究中得到证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/505f/7218168/4dab3c7ef8ef/fmed-07-00169-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验