Wroński Piotr Andrzej, Wyborski Paweł, Musiał Anna, Podemski Paweł, Sęk Grzegorz, Höfling Sven, Jabeen Fauzia
Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg, Germany.
Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
Materials (Basel). 2021 Sep 10;14(18):5221. doi: 10.3390/ma14185221.
We demonstrate single-photon emission with a low probability of multiphoton events of 5% in the C-band of telecommunication spectral range of standard silica fibers from molecular beam epitaxy grown (100)-GaAs-based structure with InAs quantum dots (QDs) on a metamorphic buffer layer. For this purpose, we propose and implement graded In content digitally alloyed InGaAs metamorphic buffer layer with maximal In content of 42% and GaAs/AlAs distributed Bragg reflector underneath to enhance the extraction efficiency of QD emission. The fundamental limit of the emission rate for the investigated structures is 0.5 GHz based on an emission lifetime of 1.95 ns determined from time-resolved photoluminescence. We prove the relevance of a proposed technology platform for the realization of non-classical light sources in the context of fiber-based quantum communication applications.
我们展示了在基于分子束外延生长的(100)-GaAs结构、在变质缓冲层上带有砷化铟量子点(QD)的标准石英光纤电信光谱范围的C波段中,多光子事件概率低至5%的单光子发射。为此,我们提出并实现了铟含量渐变的数字合金化铟镓砷变质缓冲层,其最大铟含量为42%,并在其下方设置了砷化镓/砷化铝分布布拉格反射器,以提高量子点发射的提取效率。根据时间分辨光致发光确定的1.95纳秒的发射寿命,所研究结构的发射率基本极限为0.5吉赫兹。我们证明了所提出的技术平台在基于光纤的量子通信应用背景下实现非经典光源的相关性。