Suppr超能文献

先进封装可靠性寿命预测的人工智能辅助模拟设计技术综述

An Overview of AI-Assisted Design-on-Simulation Technology for Reliability Life Prediction of Advanced Packaging.

作者信息

Panigrahy Sunil Kumar, Tseng Yi-Chieh, Lai Bo-Ruei, Chiang Kuo-Ning

机构信息

Advanced Microsystem Packaging and Nano-Mechanics Research Laboratory, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.

出版信息

Materials (Basel). 2021 Sep 16;14(18):5342. doi: 10.3390/ma14185342.

Abstract

Several design parameters affect the reliability of wafer-level type advanced packaging, such as upper and lower pad sizes, solder volume, buffer layer thickness, and chip thickness, etc. Conventionally, the accelerated thermal cycling test (ATCT) is used to evaluate the reliability life of electronic packaging; however, optimizing the design parameters through ATCT is time-consuming and expensive, reducing the number of experiments becomes a critical issue. In recent years, many researchers have adopted the finite-element-based design-on-simulation (DoS) technology for the reliability assessment of electronic packaging. DoS technology can effectively shorten the design cycle, reduce costs, and effectively optimize the packaging structure. However, the simulation analysis results are highly dependent on the individual researcher and are usually inconsistent between them. Artificial intelligence (AI) can help researchers avoid the shortcomings of the human factor. This study demonstrates AI-assisted DoS technology by combining artificial intelligence and simulation technologies to predict wafer level package (WLP) reliability. In order to ensure reliability prediction accuracy, the simulation procedure was validated by several experiments prior to creating a large AI training database. This research studies several machine learning models, including artificial neural network (ANN), recurrent neural network (RNN), support vector regression (SVR), kernel ridge regression (KRR), K-nearest neighbor (KNN), and random forest (RF). These models are evaluated in this study based on prediction accuracy and CPU time consumption.

摘要

几个设计参数会影响晶圆级先进封装的可靠性,例如上下焊盘尺寸、焊料量、缓冲层厚度和芯片厚度等。传统上,加速热循环测试(ATCT)用于评估电子封装的可靠性寿命;然而,通过ATCT优化设计参数既耗时又昂贵,减少实验次数成为一个关键问题。近年来,许多研究人员采用基于有限元的设计即仿真(DoS)技术进行电子封装的可靠性评估。DoS技术可以有效缩短设计周期、降低成本并有效优化封装结构。然而,模拟分析结果高度依赖于研究人员个人,并且他们之间的结果通常不一致。人工智能(AI)可以帮助研究人员避免人为因素的缺点。本研究通过结合人工智能和仿真技术来预测晶圆级封装(WLP)的可靠性,展示了人工智能辅助的DoS技术。为了确保可靠性预测的准确性,在创建大型人工智能训练数据库之前,通过几个实验对仿真程序进行了验证。本研究考察了几种机器学习模型,包括人工神经网络(ANN)、循环神经网络(RNN)、支持向量回归(SVR)、核岭回归(KRR)、K近邻(KNN)和随机森林(RF)。本研究基于预测准确性和CPU时间消耗对这些模型进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43bd/8472661/ac6692bfe58a/materials-14-05342-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验