文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于运动传感器的异常日检测支持对单个老年人的连续健康评估。

Motion Sensor-Based Detection of Outlier Days Supporting Continuous Health Assessment for Single Older Adults.

机构信息

Mobilab & Care, Thomas More University of Applied Sciences Kempen, Kleinhoefstraat 4, 2440 Geel, Belgium.

Department of Computer Science, KU Leuven, 3001 Heverlee, Belgium.

出版信息

Sensors (Basel). 2021 Sep 10;21(18):6080. doi: 10.3390/s21186080.


DOI:10.3390/s21186080
PMID:34577295
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8472855/
Abstract

The aging population has resulted in interest in remote monitoring of elderly individuals' health and well being. This paper describes a simple unsupervised monitoring system that can automatically detect if an elderly individual's pattern of presence deviates substantially from the recent past. The proposed system uses a small set of low-cost motion sensors and analyzes the produced data to establish an individual's typical presence pattern. Then, the algorithm uses a distance function to determine whether the individual's observed presence for each day significantly deviates from their typical pattern. Empirically, the algorithm is validated on both synthetic data and data collected by installing our system in the residences of three older individuals. In the real-world setting, the system detected, respectively, five, four, and one deviating days in the three locations. The deviating days detected by the system could result from a health issue that requires attention. The information from the system can aid caregivers in assessing the subject's health status and allows for a targeted intervention. Although the system can be refined, we show that otherwise hidden but relevant events (e.g., fall incident and irregular sleep patterns) are detected and reported to the caregiver.

摘要

人口老龄化导致人们对远程监测老年人的健康和幸福状况产生了兴趣。本文描述了一种简单的无监督监测系统,该系统可以自动检测老年人的存在模式是否与近期的模式有很大差异。该系统使用一小组低成本运动传感器来分析产生的数据,以建立个人的典型存在模式。然后,该算法使用距离函数来确定个体每天观察到的存在情况是否与他们的典型模式有显著差异。经验上,该算法在合成数据和通过在三位老年人的住所中安装我们的系统收集的数据上进行了验证。在实际环境中,系统分别在三个位置检测到了五个、四个和一个异常日。系统检测到的异常日可能是需要关注的健康问题引起的。系统提供的信息可以帮助护理人员评估对象的健康状况,并进行有针对性的干预。尽管该系统可以进行优化,但我们展示了系统可以检测到隐藏但相关的事件(例如,跌倒事件和不规则的睡眠模式)并向护理人员报告。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/c3cda2e2663b/sensors-21-06080-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/faaba67fab34/sensors-21-06080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/a63090f3117d/sensors-21-06080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/33c85375e6f0/sensors-21-06080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/fcdb51b5a277/sensors-21-06080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/1c336d282982/sensors-21-06080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/7c070b861a30/sensors-21-06080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/092c158233f8/sensors-21-06080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/b86db10b8ade/sensors-21-06080-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/03facb89b44e/sensors-21-06080-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/b069b61fd7e2/sensors-21-06080-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/c3cda2e2663b/sensors-21-06080-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/faaba67fab34/sensors-21-06080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/a63090f3117d/sensors-21-06080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/33c85375e6f0/sensors-21-06080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/fcdb51b5a277/sensors-21-06080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/1c336d282982/sensors-21-06080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/7c070b861a30/sensors-21-06080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/092c158233f8/sensors-21-06080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/b86db10b8ade/sensors-21-06080-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/03facb89b44e/sensors-21-06080-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/b069b61fd7e2/sensors-21-06080-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e10/8472855/c3cda2e2663b/sensors-21-06080-g011.jpg

相似文献

[1]
Motion Sensor-Based Detection of Outlier Days Supporting Continuous Health Assessment for Single Older Adults.

Sensors (Basel). 2021-9-10

[2]
Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring.

IEEE J Biomed Health Inform. 2017-12-11

[3]
Accelerometer sensor module and fall detection monitoring system based on wireless sensor network for e-health applications.

Telemed J E Health. 2008-8

[4]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[5]
Software simulation of unobtrusive falls detection at night-time using passive infrared and pressure mat sensors.

Annu Int Conf IEEE Eng Med Biol Soc. 2010

[6]
Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets.

PLoS One. 2017-7-5

[7]
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].

Zhonghua Jie He He Hu Xi Za Zhi. 2024-2-12

[8]
An automatic fall detection framework using data fusion of Doppler radar and motion sensor network.

Annu Int Conf IEEE Eng Med Biol Soc. 2014

[9]
Optimization and Technical Validation of the AIDE-MOI Fall Detection Algorithm in a Real-Life Setting with Older Adults.

Sensors (Basel). 2019-3-18

[10]
Re-Enactment as a Method to Reproduce Real-World Fall Events Using Inertial Sensor Data: Development and Usability Study.

J Med Internet Res. 2020-4-3

引用本文的文献

[1]
Optical Camera Communications in Healthcare: A Wearable LED Transmitter Evaluation during Indoor Physical Exercise.

Sensors (Basel). 2024-4-26

本文引用的文献

[1]
Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.

Sensors (Basel). 2020-1-6

[2]
SynSys: A Synthetic Data Generation System for Healthcare Applications.

Sensors (Basel). 2019-3-8

[3]
Automatic assessment of functional health decline in older adults based on smart home data.

J Biomed Inform. 2018-3-15

[4]
Unsupervised Machine Learning for Developing Personalised Behaviour Models Using Activity Data.

Sensors (Basel). 2017-5-4

[5]
A Smart-Home System to Unobtrusively and Continuously Assess Loneliness in Older Adults.

IEEE J Transl Eng Health Med. 2016-6-10

[6]
Automated Health Alerts Using In-Home Sensor Data for Embedded Health Assessment.

IEEE J Transl Eng Health Med. 2015-4-10

[7]
Textual summarization of events leading to health alerts.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[8]
Smartphone-based solutions for fall detection and prevention: the FARSEEING approach.

Z Gerontol Geriatr. 2012-12

[9]
Sensor-based fall risk assessment--an expert 'to go'.

Methods Inf Med. 2011

[10]
Assessing the quality of activities in a smart environment.

Methods Inf Med. 2009

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索