基于活动数据的无监督机器学习开发个性化行为模型。

Unsupervised Machine Learning for Developing Personalised Behaviour Models Using Activity Data.

机构信息

The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa 56025, Italy.

Alcove Limited, 44 Westbridge Road, London SW11 3PW, UK.

出版信息

Sensors (Basel). 2017 May 4;17(5):1034. doi: 10.3390/s17051034.

Abstract

The goal of this study is to address two major issues that undermine the large scale deployment of smart home sensing solutions in people's homes. These include the costs associated with having to install and maintain a large number of sensors, and the pragmatics of annotating numerous sensor data streams for activity classification. Our aim was therefore to propose a method to describe individual users' behavioural patterns starting from unannotated data analysis of a minimal number of sensors and a "blind" approach for activity recognition. The methodology included processing and analysing sensor data from 17 older adults living in community-based housing to extract activity information at different times of the day. The findings illustrate that 55 days of sensor data from a sensor configuration comprising three sensors, and extracting appropriate features including a "busyness" measure, are adequate to build robust models which can be used for clustering individuals based on their behaviour patterns with a high degree of accuracy (>85%). The obtained clusters can be used to describe individual behaviour over different times of the day. This approach suggests a scalable solution to support optimising the personalisation of care by utilising low-cost sensing and analysis. This approach could be used to track a person's needs over time and fine-tune their care plan on an ongoing basis in a cost-effective manner.

摘要

本研究旨在解决两大问题,这些问题阻碍了智能家居感应解决方案在人们家庭中的大规模部署。其中包括安装和维护大量传感器相关的成本,以及为活动分类标注大量传感器数据流的实际问题。因此,我们的目的是提出一种方法,从少量传感器的无注释数据分析和“盲目”活动识别方法出发,描述个体用户的行为模式。该方法包括处理和分析来自居住在社区住房中的 17 位老年人的传感器数据,以提取一天中不同时间的活动信息。研究结果表明,使用包含三个传感器的传感器配置,以及提取适当的特征,包括“忙碌程度”度量标准,从 55 天的传感器数据中可以构建出足够稳健的模型,这些模型可以用于根据个体的行为模式进行聚类,具有很高的准确性(>85%)。获得的聚类可以用于描述个体在不同时间的行为。这种方法为利用低成本感应和分析来支持优化个性化护理提供了一种可扩展的解决方案。这种方法可以用于随着时间的推移跟踪一个人的需求,并以具有成本效益的方式持续调整他们的护理计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0773/5469639/53d6c4b4fd43/sensors-17-01034-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索