Suppr超能文献

基于核熵的模糊多传感器融合水下航行器定位

Underwater Vehicle Positioning by Correntropy-Based Fuzzy Multi-Sensor Fusion.

作者信息

Shaukat Nabil, Moinuddin Muhammad, Otero Pablo

机构信息

Institute of Oceanic Engineering Research, University of Malaga, 29010 Malaga, Spain.

Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Sensors (Basel). 2021 Sep 14;21(18):6165. doi: 10.3390/s21186165.

Abstract

The ability of the underwater vehicle to determine its precise position is vital to completing a mission successfully. Multi-sensor fusion methods for underwater vehicle positioning are commonly based on Kalman filtering, which requires the knowledge of process and measurement noise covariance. As the underwater conditions are continuously changing, incorrect process and measurement noise covariance affect the accuracy of position estimation and sometimes cause divergence. Furthermore, the underwater multi-path effect and nonlinearity cause outliers that have a significant impact on positional accuracy. These non-Gaussian outliers are difficult to handle with conventional Kalman-based methods and their fuzzy variants. To address these issues, this paper presents a new and improved adaptive multi-sensor fusion method by using information-theoretic, learning-based fuzzy rules for Kalman filter covariance adaptation in the presence of outliers. Two novel metrics are proposed by utilizing correntropy Gaussian and Versoria kernels for matching theoretical and actual covariance. Using correntropy-based metrics and fuzzy logic together makes the algorithm robust against outliers in nonlinear dynamic underwater conditions. The performance of the proposed sensor fusion technique is compared and evaluated using Monte-Carlo simulations, and substantial improvements in underwater position estimation are obtained.

摘要

水下航行器确定其精确位置的能力对于成功完成任务至关重要。水下航行器定位的多传感器融合方法通常基于卡尔曼滤波,这需要知道过程噪声和测量噪声协方差。由于水下条件不断变化,不正确的过程噪声和测量噪声协方差会影响位置估计的准确性,有时还会导致发散。此外,水下多径效应和非线性会产生异常值,对位置精度有重大影响。这些非高斯异常值很难用传统的基于卡尔曼的方法及其模糊变体来处理。为了解决这些问题,本文提出了一种新的改进的自适应多传感器融合方法,该方法在存在异常值的情况下,使用基于信息论、基于学习的模糊规则来调整卡尔曼滤波器的协方差。通过利用核相关熵高斯核和Versoria核提出了两种新的度量标准,用于匹配理论协方差和实际协方差。将基于核相关熵的度量标准和模糊逻辑结合起来,使算法在非线性动态水下条件下对异常值具有鲁棒性。利用蒙特卡罗模拟对所提出的传感器融合技术的性能进行了比较和评估,并在水下位置估计方面取得了显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9891/8470692/3b8ff0b97e3f/sensors-21-06165-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验