Suppr超能文献

关于噪声协方差的识别与自适应卡尔曼滤波:对一个有50年历史问题的新审视。

On the Identification of Noise Covariances and Adaptive Kalman Filtering: A New Look at a 50 Year-Old Problem.

作者信息

Zhang Lingyi, Sidoti David, Bienkowski Adam, Pattipati Krishna R, Bar-Shalom Yaakov, Kleinman David L

机构信息

Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA.

U.S. Naval Research Laboratory, Marine Meteorology Division, Monterey, CA 93943, USA.

出版信息

IEEE Access. 2020;8:59362-59388. doi: 10.1109/access.2020.2982407. Epub 2020 Mar 23.

Abstract

The Kalman filter requires knowledge of the noise statistics; however, the noise covariances are generally . Although this problem has a long history, reliable algorithms for their estimation are scant, and necessary and sufficient conditions for identifiability of the covariances are in dispute. We address both of these issues in this paper. We first present the necessary and sufficient condition for unknown noise covariance estimation; these conditions are related to the rank of a matrix involving the auto and cross-covariances of a weighted sum of innovations, where the weights are the coefficients of the minimal polynomial of the closed-loop system transition matrix of a stable, but not necessarily optimal, Kalman filter. We present an optimization criterion and a novel six-step approach based on a successive approximation, coupled with a gradient algorithm with adaptive step sizes, to estimate the steady-state Kalman filter gain, the unknown noise covariance matrices, as well as the state prediction (and updated) error covariance matrix. Our approach enforces the structural assumptions on unknown noise covariances and ensures symmetry and positive definiteness of the estimated covariance matrices. We provide several approaches to estimate the unknown measurement noise covariance via , an approach not yet exploited in the literature. The validation of the proposed method on five different test cases from the literature demonstrates that the proposed method significantly outperforms previous state-of-the-art methods. It also offers a number of novel machine learning motivated approaches, such as sequential (one sample at a time) and mini-batch-based methods, to speed up the computations.

摘要

卡尔曼滤波器需要噪声统计信息;然而,噪声协方差通常是未知的。尽管这个问题由来已久,但用于估计它们的可靠算法却很少,并且协方差可识别性的充要条件也存在争议。我们在本文中解决这两个问题。我们首先给出未知噪声协方差估计的充要条件;这些条件与一个矩阵的秩有关,该矩阵涉及创新加权和的自协方差与互协方差,其中权重是稳定但不一定是最优的卡尔曼滤波器闭环系统转移矩阵的最小多项式的系数。我们提出一种优化准则和一种基于逐次逼近的新颖六步方法,结合具有自适应步长的梯度算法,来估计稳态卡尔曼滤波器增益、未知噪声协方差矩阵以及状态预测(和更新)误差协方差矩阵。我们的方法对未知噪声协方差施加结构假设,并确保估计的协方差矩阵的对称性和正定。我们提供了几种通过一种文献中尚未利用的方法来估计未知测量噪声协方差的途径。在文献中的五个不同测试案例上对所提出方法的验证表明,该方法显著优于先前的最先进方法。它还提供了许多受机器学习启发的新颖方法,例如顺序(一次一个样本)和基于小批量的方法,以加快计算速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1087/8638515/f0e2735e3a46/nihms-1724120-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验