Wang Ju, Spicher Nicolai, Warnecke Joana M, Haghi Mostafa, Schwartze Jonas, Deserno Thomas M
Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Muehlenpfordtstr. 23, D-38106 Braunschweig, Lower Saxony, Germany.
Wohnungsentwicklung und Forschung, Nibelungen-Wohnbau-GmbH, Freyastr. 10, D-38106 Braunschweig, Lower Saxony, Germany.
Sensors (Basel). 2021 Jan 28;21(3):864. doi: 10.3390/s21030864.
With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking.
随着传感器技术、大数据和人工智能的发展,非侵入式家庭健康监测数十年来一直是研究热点。继我们对智能车辆的研究之后,在私人空间非侵入式健康监测框架内,本研究试图通过对当前技术水平的文献综述,为非侵入式家庭监测的当前传感器技术提供指南,并特别回答以下问题:(1)哪些类型的传感器可用于非侵入式家庭健康数据采集?(2)传感器应放置在何处?(3)智能家居中可监测哪些数据?(4)获取的数据如何支持监测功能?我们进行了回顾性文献综述,总结了利用传感器技术进行非侵入式家庭健康监测的当前研究。为进行结构化分析,我们开发了一个四类术语(位置、非侵入式传感器、数据和监测功能)。我们从四个相关数据库(ACM数字图书馆、IEEE Xplore、PubMed和Scopus)获取了912篇独特文章,并筛选其相关性,最终以结构化方式使用该术语分析了n = 55篇论文。结果给出了25种可在房间、静态设施或电器中以环境感知方式部署的传感器(运动传感器、接触传感器、压力传感器、电流传感器等)。虽然行为数据(如存在情况(n = 38)、活动花费时间(n = 18))可轻松获取,但生理参数(如心率、呼吸率)的测量范围有限(n = 5)。行为数据有助于功能监测。紧急情况监测可基于行为和环境数据建立。获取的生理参数在一定程度上允许对生理功能进行合理监测。环境数据和行为数据还可检测安全异常情况。社交互动监测主要依赖于对通信工具(智能手机、计算机)的直接监测。总之,仍然缺乏大样本量和长期监测的情况下,这些监测功能对临床结果有明确效果的令人信服的证据。