文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全固态锂离子电池聚合物电解质中离子传输的分子动力学研究

Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries.

作者信息

Mabuchi Takuya, Nakajima Koki, Tokumasu Takashi

机构信息

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi, Japan.

Institute of Fluid Science, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi, Japan.

出版信息

Micromachines (Basel). 2021 Aug 26;12(9):1012. doi: 10.3390/mi12091012.


DOI:10.3390/mi12091012
PMID:34577657
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8467922/
Abstract

Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.

摘要

使用分子动力学模拟对全固态锂离子电池聚合物电解质中的离子传输进行了原子分析,以研究锂离子传输与聚合物形态之间的关系。聚环氧乙烷(PEO)和聚(二环氧乙烷-alt-氧亚甲基),即P(2EO-MO),被用作电解质材料,并探讨了盐浓度和聚合物类型对离子传输性能的影响。发现LiTFSI簇的尺寸和数量随着盐浓度的增加而增加,导致高盐浓度下离子扩散率降低。通过计算PEO和P(2EO-MO)聚合物中不同离子浓度下的跨/内跳跃速率和距离,进一步分析了锂离子传输机制。虽然PEO和P(2EO-MO)的跨跳跃速率和距离之间的平衡相当,但发现PEO中的内跳跃速率和距离高于P(2EO-MO),导致PEO中具有更高的扩散率。本研究结果为离子溶剂化的纳米结构与聚合物电解质中锂离子传输动力学之间的相关性提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/3183c54f3b1e/micromachines-12-01012-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/691c21f68440/micromachines-12-01012-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/519bde5491d1/micromachines-12-01012-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/03880876db9f/micromachines-12-01012-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/2e574bff09b5/micromachines-12-01012-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/4bb739aee864/micromachines-12-01012-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/f8328e334388/micromachines-12-01012-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/61882811f391/micromachines-12-01012-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/58d6d0daea6e/micromachines-12-01012-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/bf07fdcd6e29/micromachines-12-01012-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/3183c54f3b1e/micromachines-12-01012-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/691c21f68440/micromachines-12-01012-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/519bde5491d1/micromachines-12-01012-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/03880876db9f/micromachines-12-01012-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/2e574bff09b5/micromachines-12-01012-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/4bb739aee864/micromachines-12-01012-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/f8328e334388/micromachines-12-01012-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/61882811f391/micromachines-12-01012-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/58d6d0daea6e/micromachines-12-01012-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/bf07fdcd6e29/micromachines-12-01012-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f0/8467922/3183c54f3b1e/micromachines-12-01012-g010a.jpg

相似文献

[1]
Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries.

Micromachines (Basel). 2021-8-26

[2]
Unveiling Interfacial Li-Ion Dynamics in LiLaZrO/PEO(LiTFSI) Composite Polymer-Ceramic Solid Electrolytes for All-Solid-State Lithium Batteries.

ACS Appl Mater Interfaces. 2021-7-7

[3]
Miscible Polyether/Poly(ether-acetal) Electrolyte Blends.

Macromolecules. 2020

[4]
On the interfacial lithium dynamics in LiLaZrO:poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinement.

J Colloid Interface Sci. 2022-10

[5]
Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes.

ACS Nano. 2024-1-30

[6]
Effect of succinonitrile on ion transport in PEO-based lithium-ion battery electrolytes.

J Chem Phys. 2022-6-7

[7]
Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries.

J Colloid Interface Sci. 2020-4-1

[8]
Molecular-Level Insight into Charge Carrier Transport and Speciation in Solid Polymer Electrolytes by Chemically Tuning Both Polymer and Lithium Salt.

J Phys Chem C Nanomater Interfaces. 2023-1-24

[9]
Mechanistic insight into the improved Li ion conductivity of solid polymer electrolytes.

RSC Adv. 2019-11-26

[10]
Molecular Origin of High Cation Transference in Mixtures of Poly(pentyl malonate) and Lithium Salt.

ACS Macro Lett. 2023-5-16

引用本文的文献

[1]
Using Data-Science Approaches to Unravel Insights for Enhanced Transport of Lithium Ions in Single-Ion Conducting Polymer Electrolytes.

Chem Mater. 2024-12-6

[2]
Charge Scaling in Classical Force Fields for Lithium Ions in Polymers.

ACS Macro Lett. 2024-10-15

[3]
Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage.

Sci Adv. 2023-8-9

[4]
Molecular-Level Insight into Charge Carrier Transport and Speciation in Solid Polymer Electrolytes by Chemically Tuning Both Polymer and Lithium Salt.

J Phys Chem C Nanomater Interfaces. 2023-1-24

[5]
Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques.

Membranes (Basel). 2022-4-11

本文引用的文献

[1]
Relationship between Proton Transport and Morphology of Perfluorosulfonic Acid Membranes: A Reactive Molecular Dynamics Approach.

J Phys Chem B. 2018-6-7

[2]
CHARMM36m: an improved force field for folded and intrinsically disordered proteins.

Nat Methods. 2017-1

[3]
Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes.

ACS Cent Sci. 2015-7-10

[4]
Molecular Dynamics Simulation of Proton Transport in Polymer Electrolyte Membrane.

J Nanosci Nanotechnol. 2015-4

[5]
Effect of bound state of water on hydronium ion mobility in hydrated Nafion using molecular dynamics simulations.

J Chem Phys. 2014-9-14

[6]
Issues and challenges facing rechargeable lithium batteries.

Nature. 2001-11-15

[7]
Structure of liquid PEO-LiTFSI electrolyte.

Phys Rev Lett. 2000-6-12

[8]
Constant-pressure equations of motion.

Phys Rev A Gen Phys. 1986-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索