文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合物中锂离子经典力场的电荷标度

Charge Scaling in Classical Force Fields for Lithium Ions in Polymers.

作者信息

Liang Dongyue, Chen Yuxi, Deng Chuting, de Pablo Juan J

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

出版信息

ACS Macro Lett. 2024 Oct 15;13(10):1258-1264. doi: 10.1021/acsmacrolett.4c00368. Epub 2024 Sep 13.


DOI:10.1021/acsmacrolett.4c00368
PMID:39269737
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11483941/
Abstract

Polymer electrolytes are of interest for applications in energy storage. Molecular simulations of ion transport in polymer electrolytes have been widely used to study the conductivity in these materials. Such simulations have generally relied on classical force fields. A peculiar feature of such force fields has been that in the particular case of lithium ions (Li), their charge must be scaled down by approximately 20% to achieve agreement with experimental measurements of ion diffusivity. In this work, we present first-principles calculations that serve to justify the charge-scaling factor and van der Waals interaction parameters for Li diffusion in poly(ethylene glycol) (PEO) with bistriflimide (TFSI) counterions. Our results indicate that a scaling factor of 0.79 provides good agreement with DFT calculations over a relatively wide range of Li concentrations and temperatures, consistent with past reports where that factor was adjusted by trial and error. We also show that such a scaling factor leads to diffusivities that are in quantitative agreement with experimental measurements.

摘要

聚合物电解质在能量存储应用中备受关注。聚合物电解质中离子传输的分子模拟已被广泛用于研究这些材料的电导率。此类模拟通常依赖于经典力场。这种力场的一个独特特征是,在锂离子(Li)的特定情况下,其电荷必须缩小约20%,才能与离子扩散率的实验测量结果达成一致。在这项工作中,我们进行了第一性原理计算,以证明在含有双三氟甲磺酰亚胺(TFSI)抗衡离子的聚乙二醇(PEO)中Li扩散的电荷缩放因子和范德华相互作用参数的合理性。我们的结果表明,在相对较宽的Li浓度和温度范围内,0.79的缩放因子与密度泛函理论(DFT)计算结果吻合良好,这与过去通过反复试验调整该因子的报道一致。我们还表明,这样的缩放因子会导致扩散率与实验测量结果在数量上一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/6996b6c222a0/mz4c00368_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/31c1fad060de/mz4c00368_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/51eaa759751b/mz4c00368_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/a63a03514dde/mz4c00368_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/6996b6c222a0/mz4c00368_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/31c1fad060de/mz4c00368_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/51eaa759751b/mz4c00368_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/a63a03514dde/mz4c00368_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c5/11483941/6996b6c222a0/mz4c00368_0004.jpg

相似文献

[1]
Charge Scaling in Classical Force Fields for Lithium Ions in Polymers.

ACS Macro Lett. 2024-10-15

[2]
Effect of succinonitrile on ion transport in PEO-based lithium-ion battery electrolytes.

J Chem Phys. 2022-6-7

[3]
Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.

J Chem Phys. 2015-7-14

[4]
Effects of Solvent Polarity on Li-ion Diffusion in Polymer Electrolytes: An All-Atom Molecular Dynamics Study with Charge Scaling.

J Phys Chem B. 2020-9-17

[5]
Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes.

J Phys Chem Lett. 2017-2-2

[6]
Revised Atomic Charges for OPLS Force Field Model of Poly(Ethylene Oxide): Benchmarks and Applications in Polymer Electrolyte.

Polymers (Basel). 2021-4-2

[7]
Ion Transport at Polymer-Argyrodite Interfaces.

ACS Appl Mater Interfaces. 2024-9-11

[8]
Development of a Polarizable Force Field for Molecular Dynamics Simulations of Lithium-Ion Battery Electrolytes: Sulfone-Based Solvents and Lithium Salts.

J Phys Chem B. 2021-10-14

[9]
Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids.

J Phys Chem B. 2006-8-31

[10]
Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.

J Phys Chem B. 2015-11-19

本文引用的文献

[1]
Entropic Penalty Switches Li Solvation Site Formation and Transport Mechanisms in Mixed Polarity Copolymer Electrolytes.

Macromolecules. 2023-9-22

[2]
Influence of Polarizability on the Structure, Dynamic Characteristics, and Ion-Transport Mechanisms in Polymeric Ionic Liquids.

J Phys Chem B. 2022-4-7

[3]
Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries.

Micromachines (Basel). 2021-8-26

[4]
Revised Atomic Charges for OPLS Force Field Model of Poly(Ethylene Oxide): Benchmarks and Applications in Polymer Electrolyte.

Polymers (Basel). 2021-4-2

[5]
Effects of Solvent Polarity on Li-ion Diffusion in Polymer Electrolytes: An All-Atom Molecular Dynamics Study with Charge Scaling.

J Phys Chem B. 2020-9-17

[6]
Restricted Ion Transport by Plasticizing Side Chains in Polycarbonate-Based Solid Electrolytes.

Macromolecules. 2020-2-11

[7]
Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries.

ACS Cent Sci. 2019-7-24

[8]
Influence of Electronic Polarization on the Structure of Ionic Liquids.

J Phys Chem Lett. 2018-8-16

[9]
New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions.

Phys Chem Chem Phys. 2018-3-28

[10]
Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations.

J Chem Theory Comput. 2017-12-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索