Mouskeftaras Alexandros, Beurthey Stephan, Cogan Julien, Hallewell Gregory, Leroy Olivier, Grojo David, Perrin-Terrin Mathieu
Aix Marseille University, CNRS, LP3, UMR7341, 13284 Marseille, France.
Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France.
Micromachines (Basel). 2021 Aug 30;12(9):1054. doi: 10.3390/mi12091054.
Thermal management is one of the main challenges in the most demanding detector technologies and for the future of microelectronics. Microfluidic cooling has been proposed as a fully integrated solution to the heat dissipation problem in modern high-power microelectronics. Traditional manufacturing of silicon-based microfluidic devices involves advanced, mask-based lithography techniques for surface patterning. The limited availability of such facilities prevents widespread development and use. We demonstrate the relevance of maskless laser writing to advantageously replace lithographic steps and provide a more prototype-friendly process flow. We use a 20 W infrared laser with a pulse duration of 50 ps to engrave and drill a 525 μm-thick silicon wafer. Anodic bonding to a SiO wafer is used to encapsulate the patterned surface. Mechanically clamped inlet/outlet connectors complete the fully operational microcooling device. The functionality of the device has been validated by thermofluidic measurements. Our approach constitutes a modular microfabrication solution that should facilitate prototyping studies of new concepts for co-designed electronics and microfluidics.
热管理是最苛刻的探测器技术以及微电子学未来面临的主要挑战之一。微流体冷却已被提议作为解决现代高功率微电子学中散热问题的一种完全集成的解决方案。基于硅的微流体器件的传统制造涉及用于表面图案化的先进的基于掩膜的光刻技术。此类设施的有限可用性阻碍了其广泛的开发和使用。我们展示了无掩膜激光写入对于有利地取代光刻步骤并提供更有利于原型制作的工艺流程的相关性。我们使用一台脉冲持续时间为50皮秒的20瓦红外激光来雕刻和钻孔一块525微米厚的硅晶片。与一块SiO晶片进行阳极键合以封装图案化表面。机械夹紧的进/出口连接器完成了完全可运行的微冷却装置。该装置的功能已通过热流体测量得到验证。我们的方法构成了一种模块化微制造解决方案,应有助于对协同设计的电子学和微流体学新概念进行原型制作研究。