Chanal Margaux, Fedorov Vladimir Yu, Chambonneau Maxime, Clady Raphaël, Tzortzakis Stelios, Grojo David
Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France.
Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar.
Nat Commun. 2017 Oct 3;8(1):773. doi: 10.1038/s41467-017-00907-8.
An important challenge in the field of three-dimensional ultrafast laser processing is to achieve permanent modifications in the bulk of silicon and narrow-gap materials. Recent attempts by increasing the energy of infrared ultrashort pulses have simply failed. Here, we establish that it is because focusing with a maximum numerical aperture of about 1.5 with conventional schemes does not allow overcoming strong nonlinear and plasma effects in the pre-focal region. We circumvent this limitation by exploiting solid-immersion focusing, in analogy to techniques applied in advanced microscopy and lithography. By creating the conditions for an interaction with an extreme numerical aperture near 3 in a perfect spherical sample, repeatable femtosecond optical breakdown and controllable refractive index modifications are achieved inside silicon. This opens the door to the direct writing of three-dimensional monolithic devices for silicon photonics. It also provides perspectives for new strong-field physics and warm-dense-matter plasma experiments.Ultrafast laser processing is a versatile three-dimensional photonic structuring method but it has been limited to wide band gap materials like glasses. Here, Chanal et al. demonstrate direct refractive-index modification in the bulk of silicon by extreme localization of the energy deposition.
三维超快激光加工领域的一个重要挑战是在硅和窄带隙材料的主体中实现永久性改性。最近通过增加红外超短脉冲能量的尝试均以失败告终。在此,我们确定这是因为采用传统方案以约1.5的最大数值孔径进行聚焦无法克服焦前区域中的强非线性和等离子体效应。我们通过利用固体浸没聚焦来规避这一限制,这类似于先进显微镜和光刻中应用的技术。通过在完美球形样品中创造与接近3的极限数值孔径相互作用的条件,在硅内部实现了可重复的飞秒光学击穿和可控的折射率改性。这为硅光子学三维单片器件的直接写入打开了大门。它还为新的强场物理和温稠密物质等离子体实验提供了前景。超快激光加工是一种通用的三维光子结构化方法,但它一直局限于玻璃等宽带隙材料。在此,沙纳尔等人通过能量沉积的极端定位证明了在硅主体中直接进行折射率改性。