Wlodarczyk Krystian L, Carter Richard M, Jahanbakhsh Amir, Lopes Amiel A, Mackenzie Mark D, Maier Robert R J, Hand Duncan P, Maroto-Valer M Mercedes
Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
Micromachines (Basel). 2018 Aug 17;9(8):409. doi: 10.3390/mi9080409.
Conventional manufacturing of microfluidic devices from glass substrates is a complex, multi-step process that involves different fabrication techniques and tools. Hence, it is time-consuming and expensive, in particular for the prototyping of microfluidic devices in low quantities. This article describes a laser-based process that enables the rapid manufacturing of enclosed micro-structures by laser micromachining and microwelding of two 1.1-mm-thick borosilicate glass plates. The fabrication process was carried out only with a picosecond laser (Trumpf TruMicro 5×50) that was used for: (a) the generation of microfluidic patterns on glass, (b) the drilling of inlet/outlet ports into the material, and (c) the bonding of two glass plates together in order to enclose the laser-generated microstructures. Using this manufacturing approach, a fully-functional microfluidic device can be fabricated in less than two hours. Initial fluid flow experiments proved that the laser-generated microstructures are completely sealed; thus, they show a potential use in many industrial and scientific areas. This includes geological and petroleum engineering research, where such microfluidic devices can be used to investigate single-phase and multi-phase flow of various fluids (such as brine, oil, and CO₂) in porous media.
传统上由玻璃基板制造微流控设备是一个复杂的多步骤过程,涉及不同的制造技术和工具。因此,这既耗时又昂贵,特别是对于小批量微流控设备的原型制作而言。本文介绍了一种基于激光的工艺,该工艺能够通过对两块1.1毫米厚的硼硅酸盐玻璃板进行激光微加工和微焊接来快速制造封闭的微结构。制造过程仅使用一台皮秒激光器(通快TruMicro 5×50),用于:(a)在玻璃上生成微流控图案,(b)在材料上钻出进/出口端口,以及(c)将两块玻璃板粘合在一起以封闭激光生成的微结构。使用这种制造方法,一个功能齐全的微流控设备可以在不到两小时内制造出来。初步的流体流动实验证明,激光生成的微结构完全密封;因此,它们在许多工业和科学领域显示出潜在的用途。这包括地质和石油工程研究,在这些研究中,此类微流控设备可用于研究多孔介质中各种流体(如盐水、油和二氧化碳)的单相和多相流动。