Suppr超能文献

单细胞中异质鞭毛表达促进抗生素耐药性的多样性。

Heterogeneous Flagellar Expression in Single Salmonella Cells Promotes Diversity in Antibiotic Tolerance.

机构信息

Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.

Department of Electrical and Computer Engineering and Biomedical Engineering, University of Delaware, Newark, Delaware, USA.

出版信息

mBio. 2021 Oct 26;12(5):e0237421. doi: 10.1128/mBio.02374-21. Epub 2021 Sep 28.

Abstract

Phenotypic heterogeneity among single cells in a genetically identical population leads to diverse environmental adaptation. The human and animal pathogen Salmonella enterica serovar Typhimurium exhibits heterogeneous expression of virulence genes, including flagellar and Salmonella pathogenicity island (SPI) genes. Little is known about how the differential expression of flagellar genes among single cells affects bacterial adaptation to stresses. Here, we have developed a triple-fluorescence reporter to simultaneously monitor the expression of flagellar and SPI-1 pathways. We show that the two pathways cross talk at the single-cell level. Intriguingly, cells expressing flagella (-ON) exhibit decreased tolerance to antibiotics compared to OFF cells. Such variation depends on TolC-dependent efflux pumps. We further show that -ON cells contain higher intracellular proton concentrations. This suggests that the assembly and rotation of flagella consume the proton motive force and decrease the efflux activity, resulting in antibiotic sensitivity. Such a trade-off between motility and efflux highlights a novel mechanism of antibiotic tolerance. Antibiotic resistance and tolerance pose a severe threat to human health. How bacterial pathogens acquire antibiotic tolerance is not clear. Here, we show that the human and animal pathogen Salmonella divides its population into subgroups that are different in their abilities to tolerate antibiotic treatments. In a Salmonella population that is genetically identical, some cells express flagella to move toward nutrients, while other cells do not express flagella. Interestingly, we show that Salmonella cells that do not express flagella are more tolerant to antibiotics. We have further determined the mechanism underlying such diverse responses to antibiotics. Flagellar motility uses cellular energy stored in the form of proton motive force and makes cells less efficient in pumping out toxic molecules such as antibiotics. The overall bacterial population therefore gains benefits from such diversity to quickly adapt to different environmental conditions.

摘要

在遗传上相同的群体中,单个细胞的表型异质性导致了不同的环境适应性。人类和动物病原体鼠伤寒沙门氏菌表现出毒力基因的异质性表达,包括鞭毛和沙门氏菌致病性岛(SPI)基因。对于单个细胞中鞭毛基因的差异表达如何影响细菌对压力的适应,人们知之甚少。在这里,我们开发了一种三重荧光报告子来同时监测鞭毛和 SPI-1 途径的表达。我们表明,这两个途径在单细胞水平上相互作用。有趣的是,与 OFF 细胞相比,表达鞭毛的细胞(-ON)表现出对抗生素的耐受性降低。这种变化取决于 TolC 依赖性外排泵。我们进一步表明,-ON 细胞含有更高的细胞内质子浓度。这表明鞭毛的组装和旋转消耗质子动力并降低外排活性,导致抗生素敏感性。这种运动性和外排活性之间的权衡突出了抗生素耐受性的一种新机制。抗生素耐药性和耐受性对人类健康构成严重威胁。细菌病原体如何获得抗生素耐受性尚不清楚。在这里,我们表明,人类和动物病原体沙门氏菌将其种群分为不同亚群,这些亚群在耐受抗生素治疗的能力上有所不同。在遗传上相同的沙门氏菌群体中,一些细胞表达鞭毛以向营养物质移动,而其他细胞则不表达鞭毛。有趣的是,我们表明不表达鞭毛的沙门氏菌细胞对抗生素更耐受。我们进一步确定了这种对抗生素的不同反应背后的机制。鞭毛运动利用以质子动力形式储存的细胞能量,使细胞在外排有毒分子(如抗生素)方面效率降低。因此,整个细菌种群从这种多样性中获益,从而能够快速适应不同的环境条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9269/8546535/5a300ab8fbe2/mbio.02374-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验