Suppr超能文献

基于 MRI 的决策树构建,用于区分自身免疫性和自身炎症性内耳疾病与伴有感音神经性听力损失的慢性中耳炎。

Construction of an MRI-based decision tree to differentiate autoimmune and autoinflammatory inner ear disease from chronic otitis media with sensorineural hearing loss.

机构信息

Department of Radiology, College of Medicine, Ewha Womans University, Ewha Womans University Seoul Hospital, 260, Gonghang-daero, Gangseo-gu, Seoul, 07804, Republic of Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 13620, Republic of Korea.

出版信息

Sci Rep. 2021 Sep 27;11(1):19171. doi: 10.1038/s41598-021-98557-w.

Abstract

Autoimmune and autoinflammatory inner ear diseases (AIED/AID) are characterized by the symptom of sensorineural hearing loss (SNHL). To date, standardized diagnostic tools for AIED/AID are lacking, and clinically differentiating AIED/AID from chronic otitis media (COM) with SNHL is challenging. This retrospective study aimed to construct a magnetic resonance imaging (MRI)-based decision tree using classification and regression tree (CART) analysis to distinguish AIED/AID from COM. In total, 67 patients were enrolled between January 2004 and October 2019, comprising AIED/AID (n = 18), COM (n = 24), and control groups (n = 25). All patients underwent 3 T temporal bone MRI, including post-contrast T1-weighted images (postT1WI) and post-contrast FLAIR images (postFLAIR). Two radiologists evaluated the presence of otomastoid effusion and inner ear contrast-enhancement on MRI. A CART decision tree model was constructed using MRI features to differentiate AIED/AID from COM and control groups, and diagnostic performance was analyzed. High-intensity bilateral effusion (61.1%) and inner ear enhancement (postFLAIR, 93.8%; postT1WI, 61.1%) were the most common findings in the AIED/AID group. We constructed two CART decision tree models; the first used effusion amount as the first partitioning node and postT1WI-inner ear enhancement as the second node, whereas the second comprised two partitioning nodes with the degree of postFLAIR-enhancement of the inner ear. The first and second models enabled distinction of AIED/AID from COM with high specificity (100% and 94.3%, respectively). The amount of effusion and the degree of inner ear enhancement on MRI may facilitate the distinction between AIED/AID and COM with SNHL using decision tree models, thereby contributing to early diagnosis and intervention.

摘要

自身免疫性和自身炎症性内耳疾病(AIED/AID)的特征是感音神经性听力损失(SNHL)的症状。迄今为止,AIED/AID 缺乏标准化的诊断工具,临床上区分 AIED/AID 与伴有 SNHL 的慢性中耳炎(COM)具有挑战性。本回顾性研究旨在构建一种基于磁共振成像(MRI)的决策树,使用分类回归树(CART)分析来区分 AIED/AID 和 COM。2004 年 1 月至 2019 年 10 月期间共纳入 67 例患者,包括 AIED/AID(n=18)、COM(n=24)和对照组(n=25)。所有患者均行 3T 颞骨 MRI 检查,包括增强后 T1 加权像(postT1WI)和增强后 FLAIR 像(postFLAIR)。两位放射科医生评估 MRI 上乳突积液和内耳增强的存在情况。使用 MRI 特征构建 CART 决策树模型以区分 AIED/AID 和 COM 组,并分析诊断性能。高信号双侧积液(61.1%)和内耳增强(postFLAIR,93.8%;postT1WI,61.1%)是 AIED/AID 组最常见的表现。我们构建了两个 CART 决策树模型;第一个模型以积液量为第一个分区节点,postT1WI 内耳增强为第二个节点;第二个模型包含两个分区节点,以内耳 postFLAIR 增强程度为分区节点。第一个和第二个模型以 100%和 94.3%的高特异性区分 AIED/AID 与 COM。MRI 上积液量和内耳增强程度可能有助于使用决策树模型区分 AIED/AID 和伴有 SNHL 的 COM,从而有助于早期诊断和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a58/8476614/19261f266e93/41598_2021_98557_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验