Suppr超能文献

利用基因编码的气穴触发声力学疗法。

Acoustically triggered mechanotherapy using genetically encoded gas vesicles.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nat Nanotechnol. 2021 Dec;16(12):1403-1412. doi: 10.1038/s41565-021-00971-8. Epub 2021 Sep 27.

Abstract

Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.

摘要

分子工程和合成生物学的最新进展为生物分子和基于细胞的疗法提供了高度的分子特异性,但时空控制有限。在这里,我们展示了通过超声诱导的惯性空化,生物分子和细胞可以被工程化为在体内特定位置传递强大的机械效应。这种能力是由气穴,一种独特的遗传编码充气蛋白纳米结构来实现的。我们表明,低频超声可以将这些生物分子转化为微米级的空化气泡,释放出强大的局部机械效应。这使得工程化的气穴能够作为远程驱动的细胞杀伤和组织破坏剂,并且允许基因工程细胞在受到刺激时裂解、释放分子有效载荷并产生局部机械损伤。我们在体外、细胞内和体内证明了生物分子惯性空化的能力,包括在肿瘤归巢益生菌治疗的小鼠模型中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验