文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超声控制的先进策略及其在声遗传学和基于气体囊泡技术中的应用:综述

Advanced Strategies for Ultrasound Control and Applications in Sonogenetics and Gas Vesicle-Based Technologies: A Review.

作者信息

Du Jinpeng, Liao Min, Zhang Daimo, Li Xiangnan

机构信息

Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.

Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.

出版信息

Int J Nanomedicine. 2025 May 22;20:6533-6549. doi: 10.2147/IJN.S507322. eCollection 2025.


DOI:10.2147/IJN.S507322
PMID:40433121
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12106918/
Abstract

Control systems play an important role in the diagnosis and treatment of medicine. In contrast to light and magnetic fields, ultrasound has received much attention due to its non-invasive, cost-effective, convenient, and high spatiotemporal precision and deep-penetration characteristics. Some studies have developed special nanomaterials for therapy by controlling the production of reactive oxygen species through ultrasound irradiation. However, the complex functionalities and toxicity issues associated with these nanomaterials limit the development of ultrasound control systems. To overcome these challenges, ultrasound control systems based on synthetic biology have been developed, especially for sonogenetics and gas vesicles. The tunable thermal and mechanical effects of ultrasound act as the main triggering source, enabling engineered cells to perform sono-thermal or sono-mechanical genetic modifications in the targeted tissue. Based on an in-depth understanding of the relationship between ultrasound effects and the design, composition, and applications of engineered cellular technologies, in this review, we focus on recent activation strategies of ultrasound for sonogenetics and gas vesicles, including sono-thermal promoter switch, sono-thermal transient receptor potential channel, sono-mechanical activation and gas vesicles. In addition, applications of these advanced ultrasound control systems for cancer therapy, neural activity, visual recovery and functional imaging are presented. Finally, we discuss the current challenges faced and provide an outlook on the future developments in this evolving field.

摘要

控制系统在医学诊断和治疗中发挥着重要作用。与光和磁场不同,超声因其无创、经济高效、便捷、高时空精度和深度穿透特性而备受关注。一些研究通过超声照射控制活性氧的产生,开发了用于治疗的特殊纳米材料。然而,这些纳米材料的复杂功能和毒性问题限制了超声控制系统的发展。为了克服这些挑战,基于合成生物学的超声控制系统已被开发出来,特别是用于声遗传学和气胞。超声的可调热效应和机械效应作为主要触发源,使工程细胞能够在目标组织中进行声热或声机械基因修饰。基于对超声效应与工程细胞技术的设计、组成和应用之间关系的深入理解,在本综述中,我们重点关注声遗传学和气胞的超声最新激活策略,包括声热启动子开关、声热瞬时受体电位通道、声机械激活和气胞。此外,还介绍了这些先进超声控制系统在癌症治疗、神经活动、视觉恢复和功能成像方面的应用。最后,我们讨论了当前面临的挑战,并对这一不断发展领域的未来发展进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/062eb6ed0a63/IJN-20-6533-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/e9701ab9d489/IJN-20-6533-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/7d6ab64cd2e9/IJN-20-6533-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/770111ce3df6/IJN-20-6533-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/2038acb44e58/IJN-20-6533-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/6ad8bb16750a/IJN-20-6533-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/7b339370198d/IJN-20-6533-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/5af5475f2594/IJN-20-6533-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/9a53e7611cb9/IJN-20-6533-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/062eb6ed0a63/IJN-20-6533-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/e9701ab9d489/IJN-20-6533-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/7d6ab64cd2e9/IJN-20-6533-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/770111ce3df6/IJN-20-6533-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/2038acb44e58/IJN-20-6533-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/6ad8bb16750a/IJN-20-6533-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/7b339370198d/IJN-20-6533-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/5af5475f2594/IJN-20-6533-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/9a53e7611cb9/IJN-20-6533-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fa/12106918/062eb6ed0a63/IJN-20-6533-g0009.jpg

相似文献

[1]
Advanced Strategies for Ultrasound Control and Applications in Sonogenetics and Gas Vesicle-Based Technologies: A Review.

Int J Nanomedicine. 2025-5-22

[2]
The principles and promising future of sonogenetics for precision medicine.

Theranostics. 2024

[3]
Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound.

Angew Chem Int Ed Engl. 2024-3-22

[4]
Achieving Spatial and Molecular Specificity with Ultrasound-Targeted Biomolecular Nanotherapeutics.

Acc Chem Res. 2019-8-9

[5]
Precise modulation of cell activity using sono-responsive nano-transducers.

Biomaterials. 2025-3

[6]
Progress in application of nanomedicines for enhancing cancer sono-immunotherapy.

Ultrason Sonochem. 2024-12

[7]
Nanosensitizer-assisted sonodynamic therapy for breast cancer.

J Nanobiotechnology. 2025-4-7

[8]
Ultrasound meets nanomedicine: towards disease treatment and medical imaging.

Mikrochim Acta. 2025-3-7

[9]
Ultrasound-responsive mammalian cell synthetic biology.

IEEE Trans Ultrason Ferroelectr Freq Control. 2025-5-16

[10]
Ultrasound and Sonogenetics: A New Perspective for Controlling Cells with Sound.

Iran J Pharm Res. 2021

本文引用的文献

[1]
Ultrasound Control of Genomic Regulatory Toolboxes for Cancer Immunotherapy.

Nat Commun. 2024-12-1

[2]
Ultrasound-mediated spatial and temporal control of engineered cells in vivo.

Nat Commun. 2024-8-27

[3]
Combined UTMD-Nanoplatform for the Effective Delivery of Drugs to Treat Renal Cell Carcinoma.

Int J Nanomedicine. 2024

[4]
NIR-triggered arsenic-loaded layered double hydroxide-based films for localized thermal synergistic chemotherapy.

J Colloid Interface Sci. 2024-12

[5]
pH-Responsive injectable self-healing hydrogels loading Au nanoparticles-decorated bimetallic organic frameworks for synergistic sonodynamic-chemodynamic-starvation-chemo therapy of cancer.

J Colloid Interface Sci. 2024-12

[6]
Sonodynamic and sonomechanical effect on cellular stemness and extracellular physicochemical environment to potentiate chemotherapy.

J Nanobiotechnology. 2024-6-21

[7]
Engineered low-pathogenic Helicobacter pylori as orally tumor immunomodulators for the stimulation of systemic immune response.

Biomaterials. 2024-12

[8]
MOF-Derived Nanoparticles with Enhanced Acoustical Performance for Efficient Mechano-Sonodynamic Therapy.

Adv Mater. 2024-8

[9]
Ultrasound-triggered functional hydrogel promotes multistage bone regeneration.

Biomaterials. 2024-12

[10]
Airy-beam holographic sonogenetics for advancing neuromodulation precision and flexibility.

Proc Natl Acad Sci U S A. 2024-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索