Suppr超能文献

克服光动力疗法的缺氧限制

Conquering the Hypoxia Limitation for Photodynamic Therapy.

作者信息

Wan Yilin, Fu Lian-Hua, Li Chunying, Lin Jing, Huang Peng

机构信息

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.

出版信息

Adv Mater. 2021 Dec;33(48):e2103978. doi: 10.1002/adma.202103978. Epub 2021 Sep 27.

Abstract

Photodynamic therapy (PDT) has aroused great research interest in recent years owing to its high spatiotemporal selectivity, minimal invasiveness, and low systemic toxicity. However, due to the hypoxic nature characteristic of many solid tumors, PDT is frequently limited in therapeutic effect. Moreover, the consumption of O during PDT may further aggravate the tumor hypoxic condition, which promotes tumor proliferation, metastasis, and invasion resulting in poor prognosis of treatment. Therefore, numerous efforts have been made to increase the O content in tumor with the goal of enhancing PDT efficacy. Herein, these strategies developed in past decade are comprehensively reviewed to alleviate tumor hypoxia, including 1) delivering exogenous O to tumor directly, 2) generating O in situ, 3) reducing tumor cellular O consumption by inhibiting respiration, 4) regulating the TME, (e.g., normalizing tumor vasculature or disrupting tumor extracellular matrix), and 5) inhibiting the hypoxia-inducible factor 1 (HIF-1) signaling pathway to relieve tumor hypoxia. Additionally, the O -independent Type-I PDT is also discussed as an alternative strategy. By reviewing recent progress, it is hoped that this review will provide innovative perspectives in new nanomaterials designed to combat hypoxia and avoid the associated limitation of PDT.

摘要

近年来,光动力疗法(PDT)因其高时空选择性、微创性和低全身毒性而引起了极大的研究兴趣。然而,由于许多实体瘤具有缺氧的特性,PDT的治疗效果常常受到限制。此外,PDT过程中氧气的消耗可能会进一步加重肿瘤的缺氧状况,从而促进肿瘤的增殖、转移和侵袭,导致治疗预后不佳。因此,人们为了提高肿瘤内的氧气含量以增强PDT疗效做出了许多努力。在此,对过去十年中为缓解肿瘤缺氧而开发的这些策略进行全面综述,包括:1)直接向肿瘤输送外源性氧气;2)原位产生氧气;3)通过抑制呼吸减少肿瘤细胞对氧气的消耗;4)调节肿瘤微环境(例如,使肿瘤血管正常化或破坏肿瘤细胞外基质);5)抑制缺氧诱导因子1(HIF-1)信号通路以缓解肿瘤缺氧。此外,还讨论了不依赖氧气的I型PDT作为一种替代策略。通过回顾近期的进展,希望本综述能为设计用于对抗缺氧和避免PDT相关局限性的新型纳米材料提供创新视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验