Suppr超能文献

光致表面氧空位对TiO薄膜中电荷载流子动力学的影响。

The Effect of Photoinduced Surface Oxygen Vacancies on the Charge Carrier Dynamics in TiO Films.

作者信息

Dagdeviren Omur E, Glass Daniel, Sapienza Riccardo, Cortés Emiliano, Maier Stefan A, Parkin Ivan P, Grütter Peter, Quesada-Cabrera Raul

机构信息

Department of Mechanical Engineering, École de technologie supérieure, University of Quebec, Montreal H3C 1K3, Quebec, Canada.

The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K.

出版信息

Nano Lett. 2021 Oct 13;21(19):8348-8354. doi: 10.1021/acs.nanolett.1c02853. Epub 2021 Sep 28.

Abstract

Metal-oxide semiconductors (MOS) are widely utilized for catalytic and photocatalytic applications in which the dynamics of charged carriers (e.g., electrons, holes) play important roles. Under operation conditions, photoinduced surface oxygen vacancies (PI-SOV) can greatly impact the dynamics of charge carriers. However, current knowledge regarding the effect of PI-SOV on the dynamics of hole migration in MOS films, such as titanium dioxide, is solely based upon volume-averaged measurements and/or vacuum conditions. This limits the basic understanding of hole-vacancy interactions, as they are not capable of revealing time-resolved variations during operation. Here, we measured the effect of PI-SOV on the dynamics of hole migration using time-resolved atomic force microscopy. Our findings demonstrate that the time constant associated with hole migration is strongly affected by PI-SOV, in a reversible manner. These results will nucleate an insightful understanding of the physics of hole dynamics and thus enable emerging technologies, facilitated by engineering hole-vacancy interactions.

摘要

金属氧化物半导体(MOS)被广泛应用于催化和光催化领域,在这些应用中,带电载流子(如电子、空穴)的动力学起着重要作用。在操作条件下,光诱导表面氧空位(PI-SOV)会极大地影响载流子的动力学。然而,目前关于PI-SOV对MOS薄膜(如二氧化钛)中空穴迁移动力学影响的认识仅基于体积平均测量和/或真空条件。这限制了对空穴-空位相互作用的基本理解,因为它们无法揭示操作过程中的时间分辨变化。在这里,我们使用时间分辨原子力显微镜测量了PI-SOV对空穴迁移动力学的影响。我们的研究结果表明,与空穴迁移相关的时间常数受到PI-SOV的强烈影响,且这种影响是可逆的。这些结果将有助于深入理解空穴动力学的物理原理,从而通过设计空穴-空位相互作用推动新兴技术的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验