Suppr超能文献

RosettaSX:可靠的癌症模型和患者基因表达特征评分。

RosettaSX: Reliable gene expression signature scoring of cancer models and patients.

机构信息

Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany; Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany.

Department of Translational Medicine, Oncology Bioinformatics, Merck KGaA, Darmstadt, Germany.

出版信息

Neoplasia. 2021 Nov;23(11):1069-1077. doi: 10.1016/j.neo.2021.08.005. Epub 2021 Sep 25.

Abstract

Gene expression signatures have proven their potential to characterize important cancer phenomena like oncogenic signaling pathway activities, cellular origins of tumors, or immune cell infiltration into tumor tissues. Large collections of expression signatures provide the basis for their application to data sets, but the applicability of each signature in a new experimental context must be reassessed. We apply a methodology that utilizes the previously developed concept of coherent expression of genes in signatures to identify translatable signatures before scoring their activity in single tumors. We present a web interface (www.rosettasx.com) that applies our methodology to expression data from the Cancer Cell Line Encyclopaedia and The Cancer Genome Atlas. Configurable heat maps visualize per-cancer signature scores for 293 hand-curated literature-derived gene sets representing a wide range of cancer-relevant transcriptional modules and phenomena. The platform allows users to complement heatmaps of signature scores with molecular information on SNVs, CNVs, gene expression, gene dependency, and protein abundance or to analyze own signatures. Clustered heatmaps and further plots to drill-down results support users in studying oncological processes in cancer subtypes, thereby providing a rich resource to explore how mechanisms of cancer interact with each other as demonstrated by exemplary analyses of 2 cancer types.

摘要

基因表达特征已被证明具有描述重要癌症现象的潜力,如致癌信号通路活性、肿瘤的细胞起源或免疫细胞浸润肿瘤组织。大量的表达特征为其在数据集上的应用提供了基础,但每个特征在新的实验环境中的适用性必须重新评估。我们应用了一种方法,该方法利用先前开发的特征中基因一致表达的概念,在对单个肿瘤进行评分之前,识别可翻译的特征。我们提供了一个网络界面(www.rosettasx.com),该界面将我们的方法应用于来自癌症细胞系百科全书和癌症基因组图谱的表达数据。可配置的热图可视化了 293 个手工精选的文献衍生基因集的每个癌症特征评分,这些基因集代表了广泛的与癌症相关的转录模块和现象。该平台允许用户用 SNV、CNV、基因表达、基因依赖性和蛋白质丰度的分子信息补充特征评分的热图,或分析自己的特征。聚类热图和进一步的绘图功能支持用户研究癌症亚型中的肿瘤学过程,从而提供了丰富的资源来研究癌症的机制如何相互作用,如通过对 2 种癌症类型的示例分析所示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8de8/8479477/9591a851bfc1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验