Suppr超能文献

基于GEO和TCGA数据库鉴定宫颈癌预后的肿瘤微环境特征

Identifying TME signatures for cervical cancer prognosis based on GEO and TCGA databases.

作者信息

Xia Wen-Tao, Qiu Wang-Ren, Yu Wang-Ke, Xu Zhao-Chun, Zhang Shou-Hua

机构信息

School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, China.

Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China.

出版信息

Heliyon. 2023 Apr 7;9(4):e15096. doi: 10.1016/j.heliyon.2023.e15096. eCollection 2023 Apr.

Abstract

The mortality rate from cervical cancer (CESC), a malignant tumor that affects women, has increased significantly globally in recent years. The discovery of biomarkers points to a direction for the diagnosis of cervical cancer with the advancement of bioinformatics technology. The goal of this study was to look for potential biomarkers for the diagnosis and prognosis of CESC using the GEO and TCGA databases. Because of the high dimension and small sample size of the omic data, or the use of biomarkers generated from a single omic data, the diagnosis of cervical cancer may be inaccurate and unreliable. The purpose of this study was to search the GEO and TCGA databases for potential biomarkers for the diagnosis and prognosis of CESC. We begin by downloading CESC (GSE30760) DNA methylation data from GEO, then perform differential analysis on the downloaded methylation data and screen out the differential genes. Then, using estimation algorithms, we score immune cells and stromal cells in the tumor microenvironment and perform survival analysis on the gene expression profile data and the most recent clinical data of CESC from TCGA. Then, using the 'limma' package and Venn plot in R language to perform differential analysis of genes and screen out overlapping genes, these overlapping genes were then subjected to GO and KEGG functional enrichment analysis. The differential genes screened by the GEO methylation data and the differential genes screened by the TCGA gene expression data were intersected to screen out the common differential genes. A protein-protein interaction (PPI) network of gene expression data was then created in order to discover important genes. The PPI network's key genes were crossed with previously identified common differential genes to further validate them. The Kaplan-Meier curve was then used to determine the prognostic importance of the key genes. Survival analysis has shown that CD3E and CD80 are important for the identification of cervical cancer and can be considered as potential biomarkers for cervical cancer.

摘要

宫颈癌(CESC)是一种影响女性的恶性肿瘤,近年来全球死亡率显著上升。随着生物信息学技术的进步,生物标志物的发现为宫颈癌的诊断指明了方向。本研究的目的是利用GEO和TCGA数据库寻找CESC诊断和预后的潜在生物标志物。由于组学数据的高维度和小样本量,或者使用从单一组学数据生成的生物标志物,宫颈癌的诊断可能不准确且不可靠。本研究的目的是在GEO和TCGA数据库中搜索CESC诊断和预后的潜在生物标志物。我们首先从GEO下载CESC(GSE30760)DNA甲基化数据,然后对下载的甲基化数据进行差异分析并筛选出差异基因。然后,使用估计算法对肿瘤微环境中的免疫细胞和基质细胞进行评分,并对来自TCGA的CESC基因表达谱数据和最新临床数据进行生存分析。然后,使用R语言中的“limma”包和维恩图对基因进行差异分析并筛选出重叠基因,接着对这些重叠基因进行GO和KEGG功能富集分析。将通过GEO甲基化数据筛选出的差异基因与通过TCGA基因表达数据筛选出的差异基因进行交集分析,以筛选出共同的差异基因。随后创建基因表达数据的蛋白质-蛋白质相互作用(PPI)网络,以发现重要基因。将PPI网络的关键基因与先前确定的共同差异基因进行交叉验证。然后使用Kaplan-Meier曲线确定关键基因的预后重要性。生存分析表明,CD3E和CD80对宫颈癌的识别很重要,可被视为宫颈癌的潜在生物标志物。

相似文献

1
Identifying TME signatures for cervical cancer prognosis based on GEO and TCGA databases.
Heliyon. 2023 Apr 7;9(4):e15096. doi: 10.1016/j.heliyon.2023.e15096. eCollection 2023 Apr.
3
Methylation-driven genes and their prognostic value in cervical squamous cell carcinoma.
Ann Transl Med. 2020 Jul;8(14):868. doi: 10.21037/atm-19-4577.
4
Prognostic value of tumour microenvironment-related genes by TCGA database in rectal cancer.
J Cell Mol Med. 2021 Jun;25(12):5811-5822. doi: 10.1111/jcmm.16547. Epub 2021 May 5.
6
Tumor microenvironment characterization in cervical cancer identifies prognostic relevant gene signatures.
PLoS One. 2021 Apr 26;16(4):e0249374. doi: 10.1371/journal.pone.0249374. eCollection 2021.
10
A Novel Prognostic Risk Model for Cervical Cancer Based on Immune Checkpoint HLA-G-Driven Differentially Expressed Genes.
Front Immunol. 2022 Jul 18;13:851622. doi: 10.3389/fimmu.2022.851622. eCollection 2022.

引用本文的文献

1
UPP1 is a dual biomarker of prognosis and immune microenvironment in IDH wild-type glioblastoma.
Sci Rep. 2025 Aug 28;15(1):31677. doi: 10.1038/s41598-025-16907-4.
6
Methods in DNA methylation array dataset analysis: A review.
Comput Struct Biotechnol J. 2024 May 17;23:2304-2325. doi: 10.1016/j.csbj.2024.05.015. eCollection 2024 Dec.

本文引用的文献

1
Predicting the Lung Adenocarcinoma and Its Biomarkers by Integrating Gene Expression and DNA Methylation Data.
Front Genet. 2022 Jun 30;13:926927. doi: 10.3389/fgene.2022.926927. eCollection 2022.
2
Associations of DNA methylation algorithms of aging and cancer risk: Results from a prospective cohort study.
EBioMedicine. 2022 Jul;81:104083. doi: 10.1016/j.ebiom.2022.104083. Epub 2022 May 27.
4
Kaplan-Meier Survival, Actuarial Survival, Censoring, and Competing Events-What Is What?
Ann Thorac Surg. 2022 Jul;114(1):40-43. doi: 10.1016/j.athoracsur.2022.03.044. Epub 2022 Mar 31.
5
Protein Function Prediction Based on PPI Networks: Network Reconstruction vs Edge Enrichment.
Front Genet. 2021 Dec 14;12:758131. doi: 10.3389/fgene.2021.758131. eCollection 2021.
6
Kaplan-Meier Type Survival Curves for COVID-19: A Health Data Based Decision-Making Tool.
Front Public Health. 2021 Oct 25;9:646863. doi: 10.3389/fpubh.2021.646863. eCollection 2021.
7
DNA Methylation Profiling: An Emerging Paradigm for Cancer Diagnosis.
Annu Rev Pathol. 2022 Jan 24;17:295-321. doi: 10.1146/annurev-pathol-042220-022304. Epub 2021 Nov 4.
8
Expression and prognosis analysis of in human cancers.
Front Biosci (Landmark Ed). 2021 Oct 30;26(10):707-716. doi: 10.52586/4981.
9
RosettaSX: Reliable gene expression signature scoring of cancer models and patients.
Neoplasia. 2021 Nov;23(11):1069-1077. doi: 10.1016/j.neo.2021.08.005. Epub 2021 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验