Chen Anfu, Wang Qiankun, Li Mingke, Peng Zhangyuan, Lai Jindi, Zhang Jingjing, Xu Jinbao, Huang Hanxiong, Lei Caihong
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.
Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China.
ACS Appl Mater Interfaces. 2021 Oct 13;13(40):48153-48162. doi: 10.1021/acsami.1c15428. Epub 2021 Sep 29.
The accumulation of ice and contaminants on the surface of composite insulators will cause high energy consumption or even major hazards to power systems. In this work, the polydimethylsiloxane (PDMS) silicone rubber was modified by surface micropatterning and material compositing. Highly crosslinked poly(cyclotriphosphazene--4,4'-sulfonyldiphenol) (PZS) was used to directly coat ferroferric oxide (FeO) nanoparticles. The obtained core-shell FeO@PZS microspheres were loaded with carbon nanotubes (CNTs) to get CNTs/FeO@PZS as the photothermal magnetic filler. The PDMS/CNTs/FeO@PZS surfaces with micronscale truncated cones were prepared via a combined method of compression molding and magnetic attraction. The 1H,1H,2H,2H-perfluorodecyltrichlorosilane-coated template and magnetic field can increase the height of the microstructure to ∼76 μm and maintain the contact angle of microstructured PDMS/CNTs/FeO@PZS surfaces at a high level (∼152°). Compared with the flat PDMS surface, the micronscale truncated cones extend the freezing time from 4.5 to 11.5 min and also undermine the ice adhesion strength from ∼25 to ∼17 kPa for the microstructured PDMS/CNTs/FeO@PZS surface. The temperature of the PDMS/CNTs/FeO@PZS surface molded with magnetic attraction increases linearly with time and the internal magnetic fillers and achieves 280 °C in 10 s. The efficiency of temperature rise is increased by ∼46%, and hence the entire frozen water droplet can melt within 20 s. The strategy combining active deicing with passive anti-icing undoubtedly promotes the development of high efficiency anti-icing materials and can be applied on insulators to prevent icing flashover.
复合绝缘子表面积冰和污染物的积累会导致电力系统能耗过高甚至引发重大危险。在这项工作中,通过表面微图案化和材料复合对聚二甲基硅氧烷(PDMS)硅橡胶进行了改性。使用高度交联的聚(环三磷腈 - 4,4'-磺酰基二苯酚)(PZS)直接包覆四氧化三铁(Fe₃O₄)纳米颗粒。将得到的核壳结构Fe₃O₄@PZS微球负载碳纳米管(CNTs),得到CNTs/Fe₃O₄@PZS作为光热磁性填料。通过模压成型和磁吸引相结合的方法制备了具有微米级截顶圆锥结构的PDMS/CNTs/Fe₃O₄@PZS表面。1H,1H,2H,2H-全氟癸基三氯硅烷包覆的模板和磁场可将微观结构的高度增加到约76μm,并使微观结构的PDMS/CNTs/Fe₃O₄@PZS表面的接触角保持在较高水平(约152°)。与平坦的PDMS表面相比,微米级截顶圆锥结构将结冰时间从4.5分钟延长至11.5分钟,并且使微观结构的PDMS/CNTs/Fe₃O₄@PZS表面的冰附着力强度从约25kPa降低至约17kPa。通过磁吸引成型的PDMS/CNTs/Fe₃O₄@PZS表面温度随时间线性升高,内部磁性填料在10秒内达到280°C。升温效率提高了约46%,因此整个冻结的水滴可在20秒内融化。主动除冰与被动防冰相结合的策略无疑推动了高效防冰材料的发展,可应用于绝缘子以防止冰闪。