Zhang Zhong, Liu Yiwei, Tian Hongrui, Ma Xujiao, Yue Qian, Sun Zhixia, Lu Ying, Liu Shuxia
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China.
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China.
ACS Nano. 2021 Oct 26;15(10):16581-16588. doi: 10.1021/acsnano.1c06259. Epub 2021 Sep 29.
Facile construction of ordered macroporous polyoxometalate-based metal-organic frameworks (POM@MOFs) to break the intrinsic microporous restriction is significant but remains challenging. On one hand, the POMs introduced improve the structural stability and modify the pores of MOFs, ., introducing functional catalytic and adsorptive units. Meanwhile, the acidic POMs severely affect the nucleation and growth of the POM@MOFs, resulting in complicated synthesis and difficult assembly control. Herein, a general approach has been developed to fabricate ordered macroporous POM@MOF single crystals, involving close-packed polystyrene (PS) nanosphere templates. The artificially selected polar solvents exerting strong solvent effect with POMs weaken the affinity between POMs and metal ions, thereby effectively stabilizing the precursors from assembly before filling into the PS template interstices. The weak alkaline carboxylate used regulates the nucleation and growth of POM@MOFs through deprotonation of the ligands as well as coordinating modulation, affording a series of hierarchically cuboctahedral POM@MOF single crystals with ordered macropores (. 180 nm) and intrinsic micropores after template removal. The ordered macroporous structure and thinned microporous skeleton markedly improve mass diffusion properties, while the integral single-crystal lattice retains superior stability.
构建有序大孔多金属氧酸盐基金属有机框架(POM@MOFs)以打破其固有的微孔限制意义重大,但仍具挑战性。一方面,引入的多金属氧酸盐(POMs)提高了结构稳定性并修饰了金属有机框架(MOFs)的孔道,即引入了功能性催化和吸附单元。同时,酸性的多金属氧酸盐严重影响POM@MOFs的成核和生长,导致合成过程复杂且组装控制困难。在此,已开发出一种通用方法来制备有序大孔POM@MOF单晶,该方法涉及紧密堆积的聚苯乙烯(PS)纳米球模板。人工选择的与多金属氧酸盐具有强溶剂效应的极性溶剂削弱了多金属氧酸盐与金属离子之间的亲和力,从而在填充到PS模板间隙之前有效地稳定了组装前的前驱体。所使用的弱碱性羧酸盐通过配体的去质子化以及配位调节来调控POM@MOFs的成核和生长,在去除模板后得到一系列具有有序大孔(大于180 nm)和固有微孔的分级八面体POM@MOF单晶。有序大孔结构和变薄的微孔骨架显著改善了质量扩散性能,而完整的单晶晶格保留了优异的稳定性。