Suppr超能文献

定位和量化与真菌 B20 生物柴油降解相关的碳钢腐蚀速率。

Locating and Quantifying Carbon Steel Corrosion Rates Linked to Fungal B20 Biodiesel Degradation.

机构信息

University of Oklahomagrid.266900.b, Department of Microbiology and Plant Biology, Norman, Oklahoma, USA.

711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA.

出版信息

Appl Environ Microbiol. 2021 Nov 24;87(24):e0117721. doi: 10.1128/AEM.01177-21. Epub 2021 Sep 29.

Abstract

Fungi that degrade B20 biodiesel in storage tanks have also been linked to microbiologically influenced corrosion (MIC). A member of the filamentous fungal genus Paecilomyces and a yeast from the genus Wickerhamomyces were isolated from heavily contaminated B20 storage tanks from multiple Air Force bases. Although these taxa were linked to microbiologically influenced corrosion , precise measurement of their corrosion rates and pitting severity on carbon steel was not available. In the experiments described here, we directly link fungal growth on B20 biodiesel to higher corrosion rates and pitting corrosion of carbon steel under controlled conditions. When these fungi were growing solely on B20 biodiesel for carbon and energy, consumption of FAME and -alkanes was observed. The corrosion rates for both fungi were highest at the interface between the B20 biodiesel and the aqueous medium, where they acidified the medium and produced deeper pits than abiotic controls. Paecilomyces produced the most corrosion of carbon steel and produced the greatest pitting damage. This study characterizes and quantifies the corrosion of carbon steel by fungi that are common in fouled B20 biodiesel through their metabolism of the fuel, providing valuable insight for assessing MIC associated with storing and dispensing B20 biodiesel. Biodiesel is widely used across the United States and worldwide, blended with ultra-low-sulfur diesel in various concentrations. In this study, we were able to demonstrate that the filamentous fungus Paecilomyces AF001 and the yeast Wickerhamomyces SE3 were able to degrade fatty acid methyl esters and alkanes in biodiesel, causing increases in acidity. Both fungi also accelerated the corrosion of carbon steel, especially at the interface of the fuel and water, where their biofilms were located. This research provides controlled, quantified measurements and the localization of microbiologically influenced corrosion caused by common fungal contaminants in biodiesel fuels.

摘要

在储存罐中降解 B20 生物柴油的真菌也与微生物影响的腐蚀(MIC)有关。从多个空军基地的重度污染 B20 储存罐中分离出了丝状真菌拟青霉属和酵母属威克汉姆酵母属的一个成员。尽管这些分类群与微生物影响的腐蚀有关,但没有对其在碳钢上的腐蚀速率和点蚀严重程度进行精确测量。在本研究中,我们直接将真菌在 B20 生物柴油上的生长与在受控条件下碳钢的更高腐蚀速率和点蚀腐蚀联系起来。当这些真菌仅在 B20 生物柴油上生长以获取碳和能源时,观察到 FAME 和-α烷的消耗。这两种真菌的腐蚀速率在 B20 生物柴油与水介质的界面处最高,在那里它们使介质酸化,并产生比非生物对照更深的点蚀。拟青霉对碳钢的腐蚀最大,产生的点蚀损伤最大。本研究通过真菌对燃料的代谢来表征和量化常见于污染 B20 生物柴油中的真菌对碳钢的腐蚀,为评估与储存和分配 B20 生物柴油相关的 MIC 提供了有价值的见解。生物柴油在美国和全球范围内广泛使用,与超低硫柴油以各种浓度混合。在本研究中,我们能够证明丝状真菌拟青霉 AF001 和酵母威克汉姆酵母 SE3 能够降解生物柴油中的脂肪酸甲酯和烷烃,导致酸度增加。这两种真菌还加速了碳钢的腐蚀,特别是在燃料和水的界面处,它们的生物膜位于此处。这项研究提供了受控的、量化的测量结果,并定位了生物柴油燃料中常见真菌污染物引起的微生物影响的腐蚀。

相似文献

5
Issues for storing plant-based alternative fuels in marine environments.在海洋环境中储存植物基替代燃料的问题。
Bioelectrochemistry. 2014 Jun;97:145-53. doi: 10.1016/j.bioelechem.2013.12.003. Epub 2013 Dec 24.

本文引用的文献

5
A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.细菌对脂肪烃生物降解的综合综述
Appl Biochem Biotechnol. 2015 Jun;176(3):670-99. doi: 10.1007/s12010-015-1603-5. Epub 2015 May 3.
7
A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation.线粒体脂肪酸β-氧化的生物化学概论。
J Inherit Metab Dis. 2010 Oct;33(5):469-77. doi: 10.1007/s10545-010-9061-2. Epub 2010 Mar 2.
9
Physiological heterogeneity in biofilms.生物膜中的生理异质性。
Nat Rev Microbiol. 2008 Mar;6(3):199-210. doi: 10.1038/nrmicro1838.
10
The primary aerobic biodegradation of biodiesel B20.生物柴油B20的主要好氧生物降解
Chemosphere. 2008 Apr;71(8):1446-51. doi: 10.1016/j.chemosphere.2007.12.010. Epub 2008 Feb 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验