Suppr超能文献

注量图优化问题的圆锥规划公式。

Conic formulation of fluence map optimization problems.

作者信息

Ten Eikelder S C M, Ajdari A, Bortfeld T, den Hertog D

机构信息

Department of Econometrics and Operations Research, Tilburg University, The Netherlands.

Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America.

出版信息

Phys Med Biol. 2021 Nov 24;66(22). doi: 10.1088/1361-6560/ac2b82.

Abstract

The convexity of objectives and constraints in fluence map optimization (FMO) for radiation therapy has been extensively studied. Next to convexity, there is another important characteristic of optimization functions and problems, which has thus far not been considered in FMO literature: conic representation. Optimization problems that are conically representable using quadratic, exponential and power cones are solvable with advanced primal-dual interior-point algorithms. These algorithms guarantee an optimal solution in polynomial time and have good performance in practice. In this paper, we construct conic representations for most FMO objectives and constraints. This paper is the first that shows that FMO problems containing multiple biological evaluation criteria can be solved in polynomial time. For fractionation-corrected functions for which no exact conic reformulation is found, we provide an accurate approximation that is conically representable. We present numerical results on the TROTS data set, which demonstrate very stable numerical performance for solving FMO problems in conic form. With ongoing research in the optimization community, improvements in speed can be expected, which makes conic optimization a promising alternative for solving FMO problems.

摘要

放射治疗中影响图优化(FMO)里目标函数和约束条件的凸性已得到广泛研究。除了凸性之外,优化函数和问题还有另一个重要特性,而到目前为止FMO文献中尚未考虑这一特性:圆锥表示。能用二次锥、指数锥和幂锥进行圆锥表示的优化问题可通过先进的原始对偶内点算法求解。这些算法能保证在多项式时间内得到最优解,并且在实际应用中表现良好。在本文中,我们为大多数FMO目标函数和约束条件构建了圆锥表示。本文首次表明,包含多个生物学评估标准的FMO问题可在多项式时间内求解。对于未找到精确圆锥重构的分次校正函数,我们提供了一种可圆锥表示的精确近似。我们给出了TROTS数据集的数值结果,这些结果证明了以圆锥形式求解FMO问题具有非常稳定的数值性能。随着优化领域研究的不断推进,有望实现速度提升,这使得圆锥优化成为解决FMO问题的一种有前景的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验