Matar Mona, Gokoglu Suleyman A, Prelich Matthew T, Gallo Christopher A, Iqbal Asad K, Britten Richard A, Prabhu R K, Myers Jerry G
NASA Glenn Research Center, Cleveland, OH, United States.
ZIN Technologies, Inc., Cleveland, OH, United States.
Front Syst Neurosci. 2021 Sep 13;15:713131. doi: 10.3389/fnsys.2021.713131. eCollection 2021.
This research uses machine-learned computational analyses to predict the cognitive performance impairment of rats induced by irradiation. The experimental data in the analyses is from a rodent model exposed to ≤15 cGy of individual galactic cosmic radiation (GCR) ions: He, O, Si, Ti, or Fe, expected for a Lunar or Mars mission. This work investigates rats at a subject-based level and uses performance scores taken before irradiation to predict impairment in attentional set-shifting (ATSET) data post-irradiation. Here, the worst performing rats of the control group define the impairment thresholds based on population analyses via cumulative distribution functions, leading to the labeling of impairment for each subject. A significant finding is the exhibition of a dose-dependent increasing probability of impairment for 1 to 10 cGy of Si or Fe in the simple discrimination (SD) stage of the ATSET, and for 1 to 10 cGy of Fe in the compound discrimination (CD) stage. On a subject-based level, implementing machine learning (ML) classifiers such as the Gaussian naïve Bayes, support vector machine, and artificial neural networks identifies rats that have a higher tendency for impairment after GCR exposure. The algorithms employ the experimental prescreen performance scores as multidimensional input features to predict each rodent's susceptibility to cognitive impairment due to space radiation exposure. The receiver operating characteristic and the precision-recall curves of the ML models show a better prediction of impairment when Fe is the ion in question in both SD and CD stages. They, however, do not depict impairment due to He in SD and Si in CD, suggesting no dose-dependent impairment response in these cases. One key finding of our study is that prescreen performance scores can be used to predict the ATSET performance impairments. This result is significant to crewed space missions as it supports the potential of predicting an astronaut's impairment in a specific task before spaceflight through the implementation of appropriately trained ML tools. Future research can focus on constructing ML ensemble methods to integrate the findings from the methodologies implemented in this study for more robust predictions of cognitive decrements due to space radiation exposure.
本研究采用机器学习计算分析方法来预测辐射诱导的大鼠认知功能损害。分析中的实验数据来自暴露于≤15 cGy的单个银河宇宙辐射(GCR)离子(He、O、Si、Ti或Fe)的啮齿动物模型,这些离子是月球或火星任务中预期会遇到的。这项工作在个体层面上研究大鼠,并使用辐照前的性能分数来预测辐照后注意力转换(ATSET)数据中的损害情况。在此,对照组中表现最差的大鼠通过累积分布函数基于群体分析来定义损害阈值,从而对每个个体进行损害标记。一个重要发现是,在ATSET的简单辨别(SD)阶段,对于1至10 cGy的Si或Fe,以及在复合辨别(CD)阶段对于1至10 cGy的Fe,损害概率呈剂量依赖性增加。在个体层面上,实施诸如高斯朴素贝叶斯、支持向量机和人工神经网络等机器学习(ML)分类器可识别出在GCR暴露后有更高损害倾向的大鼠。这些算法将实验预筛选性能分数用作多维输入特征,以预测每只啮齿动物因空间辐射暴露而导致认知损害的易感性。当Fe是SD和CD阶段所涉及的离子时,ML模型的受试者工作特征曲线和精确召回率曲线显示出对损害的更好预测。然而,它们并未描绘出SD阶段He和CD阶段Si导致的损害,表明在这些情况下不存在剂量依赖性损害反应。我们研究的一个关键发现是,预筛选性能分数可用于预测ATSET性能损害。这一结果对载人航天任务具有重要意义,因为它支持通过实施经过适当训练的ML工具在航天飞行前预测宇航员在特定任务中的损害的潜力。未来的研究可以专注于构建ML集成方法,以整合本研究中实施的方法的结果,从而更可靠地预测因空间辐射暴露导致的认知能力下降。