Liu Yang, Guo Yuqiao, Wu Changzheng, Xie Yi
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, P.R. China.
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, P.R. China.
J Phys Chem Lett. 2021 Oct 7;12(39):9730-9740. doi: 10.1021/acs.jpclett.1c02047. Epub 2021 Sep 30.
Spintronics is a promising alternative to the conventional silicon transistor-based electronics that are gradually approaching their physical limitations. Ultrathin two-dimensional van der Waals (vdW) materials (2D materials) with controllable spin degrees of freedom are recognized as extremely promising spintronic materials in architectures for the post-Moore era. In this Perspective, we review recent progress on spin-dependent transport behaviors (SDTBs) confined at the 2D scale, which are the mainstream paradigms for spintronic devices. We first present the mechanism and the key factors of SDTBs in 2D nonmagnetic materials-based hybrid devices. Then, some chemical modulation strategies for inducing short-range magnetic order and magneto-electric performance into 2D nonmagnetic materials are discussed. Furthermore, we concentrate on introducing intriguing SDTBs in 2D long-range ferromagnetic materials-based vdW devices. Finally, we highlight the current challenges in the study of spin-dependent transport of 2D modified materials and 2D material-based spintronic devices, in the hope of accelerating their applications.
自旋电子学是传统硅基晶体管电子学的一种有前途的替代方案,传统硅基晶体管电子学正逐渐接近其物理极限。具有可控自旋自由度的超薄二维范德华(vdW)材料(二维材料)被认为是后摩尔时代架构中极具前景的自旋电子材料。在这篇综述中,我们回顾了在二维尺度上受限的自旋相关输运行为(SDTBs)的最新进展,这是自旋电子器件的主流范式。我们首先介绍了基于二维非磁性材料的混合器件中SDTBs的机制和关键因素。然后,讨论了一些用于在二维非磁性材料中诱导短程磁序和磁电性能的化学调制策略。此外,我们专注于介绍基于二维长程铁磁材料的vdW器件中有趣的SDTBs。最后,我们强调了二维改性材料和二维材料基自旋电子器件自旋相关输运研究中的当前挑战,希望加速它们的应用。