Huang Lizhen, Wang Changlong, Liu Ping, Wang Shasha, Tan Haige, Liu Zhanfeng, Feng Yan, Ma Xiang, Wu Junjie, Sun Zhe, Cui Shengtao, Lu Yalin, Xiang Bin
Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, 230026, P. R. China.
School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China.
Small. 2024 Oct;20(43):e2403002. doi: 10.1002/smll.202403002. Epub 2024 Jun 25.
Van der Waals (vdW) magnetic materials have broad application prospects in next-generation spintronics. Inserting magnetic elements into nonmagnetic vdW materials can introduce magnetism and enhance various transport properties. Herein, the unconventional magnetic and magneto-transport phenomena is reported in NiTaSeS crystal by intercalating Ni atoms into nonmagnetic 2H-TaSeS matrix. Magnetic characterization reveals a canted magnetic structure in NiTaSeS, which results in an antiferromagnetic (AFM) order along the c-axis and a ferromagnetic (FM) moment in the ab-plane. The presence of spin-flop (SF) behavior can also be attributed to the canted magnetic structure. Temperature-dependent resistivity exhibits a metallic behavior with an abrupt decrease corresponding to the magnetic transition. Magneto-transport measurements demonstrate a positive magnetoresistance (MR) with a plateau that is different from conventional magnetic materials. The field-dependent Hall signal exhibits nonlinear field dependence when the material is in magnetically ordered state. These unconventional magneto-transport behaviors are attributed to the field-induced formation of a complex spin texture in NiTaSeS. In addition, it further investigated the angle dependence of MR and observed an unusual fourfold anisotropic magnetoresistance (AMR) effect. This work inspires future research on spintronic devices utilizing magnetic atom-intercalated quasi-2D materials.
范德华(vdW)磁性材料在下一代自旋电子学中具有广阔的应用前景。将磁性元素插入非磁性vdW材料中可以引入磁性并增强各种输运性质。在此,通过将镍原子插入非磁性的2H-TaSeS基体中,在NiTaSeS晶体中报道了非常规的磁性和磁输运现象。磁性表征揭示了NiTaSeS中的倾斜磁结构,这导致沿c轴的反铁磁(AFM)序和在ab平面中的铁磁(FM)矩。自旋翻转(SF)行为的存在也可归因于倾斜磁结构。与温度相关的电阻率呈现出金属行为,在对应于磁转变处有突然下降。磁输运测量表明存在具有平台的正磁电阻(MR),这与传统磁性材料不同。当材料处于磁有序状态时,与场相关的霍尔信号呈现出非线性场依赖性。这些非常规的磁输运行为归因于在NiTaSeS中场诱导形成的复杂自旋织构。此外,进一步研究了MR的角度依赖性,并观察到了异常的四重各向异性磁电阻(AMR)效应。这项工作激发了未来对利用磁性原子插入准二维材料的自旋电子器件的研究。