Seo Junho, Kim Duck Young, An Eun Su, Kim Kyoo, Kim Gi-Yeop, Hwang Soo-Yoon, Kim Dong Wook, Jang Bo Gyu, Kim Heejung, Eom Gyeongsik, Seo Seung Young, Stania Roland, Muntwiler Matthias, Lee Jinwon, Watanabe Kenji, Taniguchi Takashi, Jo Youn Jung, Lee Jieun, Min Byung Il, Jo Moon Ho, Yeom Han Woong, Choi Si-Young, Shim Ji Hoon, Kim Jun Sung
Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea.
Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea.
Sci Adv. 2020 Jan 17;6(3):eaay8912. doi: 10.1126/sciadv.aay8912. eCollection 2020 Jan.
In spintronics, two-dimensional van der Waals crystals constitute a most promising material class for long-distance spin transport or effective spin manipulation at room temperature. To realize all-vdW-material-based spintronic devices, however, vdW materials with itinerant ferromagnetism at room temperature are needed for spin current generation and thereby serve as an effective spin source. We report theoretical design and experimental realization of a iron-based vdW material, FeGeTe, showing a nearly room temperature ferromagnetic order, together with a large magnetization and high conductivity. These properties are well retained even in cleaved crystals down to seven layers, with notable improvement in perpendicular magnetic anisotropy. Our findings highlight FeGeTe and its nanometer-thick crystals as a promising candidate for spin source operation at nearly room temperature and hold promise to further increase in vdW ferromagnets by theory-guided material discovery.
在自旋电子学中,二维范德华晶体是室温下长距离自旋输运或有效自旋操控最有前景的一类材料。然而,为了实现全范德华材料基自旋电子器件,需要具有室温巡游铁磁性的范德华材料来产生自旋电流,从而作为有效的自旋源。我们报告了一种铁基范德华材料FeGeTe的理论设计和实验实现,它表现出接近室温的铁磁序,同时具有大的磁化强度和高电导率。即使在劈裂至七层的晶体中,这些特性也能很好地保持,垂直磁各向异性有显著改善。我们的发现突出了FeGeTe及其纳米厚晶体作为近室温自旋源操作的有前景候选材料,并有望通过理论指导的材料发现进一步增加范德华铁磁体。