Suppr超能文献

十二种便携医疗质量筛选设备的实验室评估

Laboratory evaluation of twelve portable devices for medicine quality screening.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR.

出版信息

PLoS Negl Trop Dis. 2021 Sep 30;15(9):e0009360. doi: 10.1371/journal.pntd.0009360. eCollection 2021 Sep.

Abstract

BACKGROUND

Post-market surveillance is a key regulatory function to prevent substandard and falsified (SF) medicines from being consumed by patients. Field deployable technologies offer the potential for rapid objective screening for SF medicines.

METHODS AND FINDINGS

We evaluated twelve devices: three near infrared spectrometers (MicroPHAZIR RX, NIR-S-G1, Neospectra 2.5), two Raman spectrometers (Progeny, TruScan RM), one mid-infrared spectrometer (4500a), one disposable colorimetric assay (Paper Analytical Devices, PAD), one disposable immunoassay (Rapid Diagnostic Test, RDT), one portable liquid chromatograph (C-Vue), one microfluidic system (PharmaChk), one mass spectrometer (QDa), and one thin layer chromatography kit (GPHF-Minilab). Each device was tested with a series of field collected medicines (FCM) along with simulated medicines (SIM) formulated in a laboratory. The FCM and SIM ranged from samples with good quality active pharmaceutical ingredient (API) concentrations, reduced concentrations of API (80% and 50% of the API), no API, and the wrong API. All the devices had high sensitivities (91.5 to 100.0%) detecting medicines with no API or the wrong API. However, the sensitivities of each device towards samples with 50% and 80% API varied greatly, from 0% to 100%. The infrared and Raman spectrometers had variable sensitivities for detecting samples with 50% and 80% API (from 5.6% to 50.0%). The devices with the ability to quantitate API (C-Vue, PharmaChk, QDa) had sensitivities ranging from 91.7% to 100% to detect all poor quality samples. The specificity was lower for the quantitative C-Vue, PharmaChk, & QDa (50.0% to 91.7%) than for all the other devices in this study (95.5% to 100%).

CONCLUSIONS

The twelve devices evaluated could detect medicines with the wrong or none of the APIs, consistent with falsified medicines, with high accuracy. However, API quantitation to detect formulations similar to those commonly found in substandards proved more difficult, requiring further technological innovation.

摘要

背景

上市后监测是防止劣药和假药(SF)被患者使用的关键监管功能。现场可部署技术为快速客观筛查 SF 药品提供了潜力。

方法和发现

我们评估了十二种设备:三种近红外光谱仪(MicroPHAZIR RX、NIR-S-G1、Neospectra 2.5)、两种拉曼光谱仪(Progeny、TruScan RM)、一种中红外光谱仪(4500a)、一种一次性比色测定法(纸分析设备,PAD)、一种一次性免疫测定法(快速诊断测试,RDT)、一种便携式液相色谱仪(C-Vue)、一种微流系统(PharmaChk)、一种质谱仪(QDa)和一种薄层色谱试剂盒(GPHF-Minilab)。每种设备都用一系列现场采集的药物(FCM)和实验室中配制的模拟药物(SIM)进行了测试。FCM 和 SIM 的范围从具有良好质量活性药物成分(API)浓度的样品、API 浓度降低(API 的 80%和 50%)、无 API 和错误 API 的样品。所有设备对无 API 或错误 API 的药物的检测均具有很高的灵敏度(91.5%至 100.0%)。然而,每种设备对 API 为 50%和 80%的样品的灵敏度差异很大,从 0%到 100%不等。红外和拉曼光谱仪对检测 API 为 50%和 80%的样品的灵敏度各不相同(5.6%至 50.0%)。具有定量 API 能力的设备(C-Vue、PharmaChk、QDa)对所有劣质样品的检测灵敏度均在 91.7%至 100%之间。定量 C-Vue、PharmaChk 和 QDa 的特异性(50.0%至 91.7%)低于本研究中其他所有设备(95.5%至 100%)。

结论

评估的十二种设备可以检测到 API 错误或不存在的药物,与假药一致,具有很高的准确性。然而,要检测到与劣质品中常见的制剂相似的制剂,API 定量就更具挑战性,需要进一步的技术创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0c2/8483346/4b87464b305b/pntd.0009360.g001.jpg

相似文献

1
Laboratory evaluation of twelve portable devices for medicine quality screening.
PLoS Negl Trop Dis. 2021 Sep 30;15(9):e0009360. doi: 10.1371/journal.pntd.0009360. eCollection 2021 Sep.
2
A comparative field evaluation of six medicine quality screening devices in Laos.
PLoS Negl Trop Dis. 2021 Sep 30;15(9):e0009674. doi: 10.1371/journal.pntd.0009674. eCollection 2021 Sep.
3
Implementation of field detection devices for antimalarial quality screening in Lao PDR-A cost-effectiveness analysis.
PLoS Negl Trop Dis. 2021 Sep 30;15(9):e0009539. doi: 10.1371/journal.pntd.0009539. eCollection 2021 Sep.
4
Multiphase evaluation of portable medicines quality screening devices.
PLoS Negl Trop Dis. 2021 Sep 30;15(9):e0009287. doi: 10.1371/journal.pntd.0009287. eCollection 2021 Sep.
5
Evaluating Low-Cost Optical Spectrometers for the Detection of Simulated Substandard and Falsified Medicines.
Appl Spectrosc. 2020 Mar;74(3):323-333. doi: 10.1177/0003702819877422. Epub 2019 Nov 4.
6
Surveillance for falsified and substandard medicines in Africa and Asia by local organizations using the low-cost GPHF Minilab.
PLoS One. 2017 Sep 6;12(9):e0184165. doi: 10.1371/journal.pone.0184165. eCollection 2017.
8
Field detection devices for screening the quality of medicines: a systematic review.
BMJ Glob Health. 2018 Aug 29;3(4):e000725. doi: 10.1136/bmjgh-2018-000725. eCollection 2018.
10
Comparing the return on investment of technologies to detect substandard and falsified amoxicillin: A Kenya case study.
PLoS One. 2023 Jan 18;18(1):e0268661. doi: 10.1371/journal.pone.0268661. eCollection 2023.

引用本文的文献

4
Quality of Essential Medicines from Different Sources in Enugu and Anambra, Nigeria.
Am J Trop Med Hyg. 2024 May 14;111(1):179-195. doi: 10.4269/ajtmh.23-0837. Print 2024 Jul 3.
5
Portable NIR spectroscopy: the route to green analytical chemistry.
Front Chem. 2023 Sep 25;11:1214825. doi: 10.3389/fchem.2023.1214825. eCollection 2023.
6
Usefulness of medicine screening tools in the frame of pharmaceutical post-marketing surveillance.
PLoS One. 2023 Aug 11;18(8):e0289865. doi: 10.1371/journal.pone.0289865. eCollection 2023.
7
Comparing the return on investment of technologies to detect substandard and falsified amoxicillin: A Kenya case study.
PLoS One. 2023 Jan 18;18(1):e0268661. doi: 10.1371/journal.pone.0268661. eCollection 2023.
10
Evaluation of portable devices for medicine quality screening: Lessons learnt, recommendations for implementation, and future priorities.
PLoS Med. 2021 Sep 30;18(9):e1003747. doi: 10.1371/journal.pmed.1003747. eCollection 2021 Sep.

本文引用的文献

1
Field detection devices for screening the quality of medicines: a systematic review.
BMJ Glob Health. 2018 Aug 29;3(4):e000725. doi: 10.1136/bmjgh-2018-000725. eCollection 2018.
4
A New Handheld Device for the Detection of Falsified Medicines: Demonstration on Falsified Artemisinin-Based Therapies from the Field.
Am J Trop Med Hyg. 2017 May;96(5):1117-1123. doi: 10.4269/ajtmh.16-0904. Epub 2017 May 13.
5
Pilot testing of dipsticks as point-of-care assays for rapid diagnosis of poor-quality artemisinin drugs in endemic settings.
Trop Med Health. 2016 May 16;44:15. doi: 10.1186/s41182-016-0015-8. eCollection 2016.
6
Rapid evaluation of artesunate quality with a specific monoclonal antibody-based lateral flow dipstick.
Anal Bioanal Chem. 2016 Sep;408(22):6003-8. doi: 10.1007/s00216-016-9363-9. Epub 2016 Feb 12.
7
Paper test cards for presumptive testing of very low quality antimalarial medications.
Am J Trop Med Hyg. 2015 Jun;92(6 Suppl):17-23. doi: 10.4269/ajtmh.14-0384. Epub 2015 Apr 20.
8
Responding to the pandemic of falsified medicines.
Am J Trop Med Hyg. 2015 Jun;92(6 Suppl):113-118. doi: 10.4269/ajtmh.14-0393. Epub 2015 Apr 20.
10
Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals.
Anal Chem. 2013 Jul 2;85(13):6453-60. doi: 10.1021/ac400989p. Epub 2013 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验