i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal.
CFisUC - Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal.
J Control Release. 2021 Nov 10;339:381-390. doi: 10.1016/j.jconrel.2021.09.031. Epub 2021 Sep 28.
Glioblastoma multiforme (GBM) is the most aggressive and invasive malignant brain cancer. GBM is characterized by a dramatic metabolic imbalance leading to increased secretion of the pro-angiogenic factor VEGF and subsequent abnormal tumor vascularization. In 2009, FDA approved the intravenous administration of bevacizumab, an anti-VEGF monoclonal antibody, as a therapeutic agent for patients with GBM. However, the number of systemic side effects and reduced accessibility of bevacizumab to the central nervous system and consequently to the GBM tumor mass limited its effectiveness in improving patient survival. In this study, we combined experimental and computational modelling to quantitatively characterize the dynamics of VEGF secretion and turnover in GBM and in normal brain cells and simultaneous monitoring of vessel growth. We showed that sequestration of VEGF inside GBM cells, can be used as a novel target for improved bevacizumab-based therapy. We have engineered the VEGF nanotrapper, a cargo system that allows cellular uptake of bevacizumab and inhibits VEGF secretion required for angiogenesis activation and development. Here, we show the therapeutic efficacy of this nanocargo in reducing vascularization and tumor cell mass of GBM in vitro and in vivo cancer models.
多形性胶质母细胞瘤(GBM)是最具侵袭性和侵略性的恶性脑癌。GBM 的特征是代谢严重失衡,导致促血管生成因子 VEGF 分泌增加,随后肿瘤血管异常。2009 年,FDA 批准静脉注射贝伐单抗(一种抗 VEGF 单克隆抗体)作为 GBM 患者的治疗药物。然而,贝伐单抗的全身副作用数量较多,并且难以进入中枢神经系统,因此无法到达 GBM 肿瘤部位,限制了其提高患者生存率的效果。在这项研究中,我们结合实验和计算模型,定量描述了 GBM 和正常脑细胞中 VEGF 分泌和周转的动力学,以及血管生长的同步监测。我们表明,GBM 细胞内 VEGF 的隔离可以作为一种新的靶点,用于改进基于贝伐单抗的治疗。我们设计了 VEGF 纳米陷阱,这是一种货物系统,允许细胞摄取贝伐单抗,并抑制血管生成激活和发展所需的 VEGF 分泌。在这里,我们展示了这种纳米载体在减少 GBM 的血管生成和肿瘤细胞数量方面的治疗效果,无论是在体外还是体内癌症模型中。