Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 00826, Republic of Korea.
Sci Rep. 2019 Jul 31;9(1):11085. doi: 10.1038/s41598-019-47438-4.
When glioblastoma multiforme (GBM) is treated with anti-vascular endothelial growth factor (VEGF) agents, it commonly exhibits tumor progression due to the development of resistance, which results in a dismal survival rate. GBM tumors contain a large number of monocytes/macrophages, which have been shown to be resistant to the effects of bevacizumab. It has been reported that tumor-associated macrophages (TAMs) promote resistance to bevacizumab treatment. Therefore, it is important to target TAMs in the GBM microenvironment. TAMs, which depend on chemokine ligand 2 (CCL2) for differentiation and survival, induce the expression of proangiogenic factors such as VEGF. Dynamic susceptibility contrast (DSC)-MR imaging is an advanced technique that provides information on tumor blood volume and can potentially predict the response to several treatments, including anti-angiogenic agents such as bevacizumab, in human GBM. In this study, we used a CCL2 inhibitor, mNOX-E36, to suppress the recruitment of TAMs in a CCL2-expressing rat GBM model and investigated the effect of combination therapy with bevacizumab using DSC-MR imaging. We demonstrated that the inhibition of CCL2 blocked macrophage recruitment and angiogenesis, which resulted in decreased tumor volume and blood volume in CCL2-expressing GBM in a rat model. Our results provide direct evidence that CCL2 expression can increase the resistance to bevacizumab, which can be assessed noninvasively with the DSC-MR imaging technique. This study shows that the suppression of CCL2 can play an important role in increasing the efficacy of anti-angiogenic treatment in GBM by inhibiting the recruitment of CCL2-dependent macrophages.
当多形性胶质母细胞瘤(GBM)接受抗血管内皮生长因子(VEGF)药物治疗时,由于耐药性的发展,通常会出现肿瘤进展,导致生存率极低。GBM 肿瘤含有大量单核细胞/巨噬细胞,这些细胞已被证明对贝伐单抗的作用具有耐药性。有报道称,肿瘤相关巨噬细胞(TAMs)促进了对贝伐单抗治疗的耐药性。因此,在 GBM 微环境中靶向 TAMs 非常重要。TAMs 依赖趋化因子配体 2(CCL2)分化和存活,诱导血管生成因子如 VEGF 的表达。动态对比增强磁共振成像(DSC-MR)是一种先进的技术,可提供肿瘤血容量信息,并可能预测包括贝伐单抗在内的几种治疗方法的反应,在人类 GBM 中。在这项研究中,我们使用了 CCL2 抑制剂 mNOX-E36 来抑制 CCL2 表达的大鼠 GBM 模型中 TAMs 的募集,并通过 DSC-MR 成像研究了与贝伐单抗联合治疗的效果。我们证明了 CCL2 抑制阻断了巨噬细胞募集和血管生成,导致 CCL2 表达的 GBM 肿瘤体积和血容量减少。我们的结果提供了直接证据,表明 CCL2 表达可以增加对贝伐单抗的耐药性,这可以通过 DSC-MR 成像技术进行无创评估。这项研究表明,通过抑制 CCL2 依赖性巨噬细胞的募集,抑制 CCL2 的表达可以在增加 GBM 抗血管生成治疗的疗效方面发挥重要作用。