Cheng Furui, Liu Dongyu, Du Fan, Lin Yanna, Zytek Alexandra, Li Haomin, Qu Huamin, Veeramachaneni Kalyan
IEEE Trans Vis Comput Graph. 2022 Jan;28(1):378-388. doi: 10.1109/TVCG.2021.3114836. Epub 2021 Dec 24.
Machine learning (ML) is increasingly applied to Electronic Health Records (EHRs) to solve clinical prediction tasks. Although many ML models perform promisingly, issues with model transparency and interpretability limit their adoption in clinical practice. Directly using existing explainable ML techniques in clinical settings can be challenging. Through literature surveys and collaborations with six clinicians with an average of 17 years of clinical experience, we identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence. Following an iterative design process, we further designed and developed VBridge, a visual analytics tool that seamlessly incorporates ML explanations into clinicians' decision-making workflow. The system includes a novel hierarchical display of contribution-based feature explanations and enriched interactions that connect the dots between ML features, explanations, and data. We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians, showing that visually associating model explanations with patients' situational records can help clinicians better interpret and use model predictions when making clinician decisions. We further derived a list of design implications for developing future explainable ML tools to support clinical decision-making.
机器学习(ML)越来越多地应用于电子健康记录(EHR),以解决临床预测任务。尽管许多ML模型表现出良好的前景,但模型透明度和可解释性方面的问题限制了它们在临床实践中的应用。在临床环境中直接使用现有的可解释ML技术可能具有挑战性。通过文献调查以及与六位平均拥有17年临床经验的临床医生合作,我们确定了三个关键挑战,包括临床医生对ML特征不熟悉、缺乏背景信息以及对队列水平证据的需求。经过迭代设计过程,我们进一步设计并开发了VBridge,这是一种可视化分析工具,可将ML解释无缝整合到临床医生的决策工作流程中。该系统包括基于贡献的特征解释的新颖分层显示以及丰富的交互,这些交互将ML特征、解释和数据之间的联系串联起来。我们通过两个案例研究以及对四位临床医生的专家访谈展示了VBridge的有效性,表明将模型解释与患者的情境记录进行可视化关联可以帮助临床医生在做出临床决策时更好地解释和使用模型预测。我们进一步得出了一系列设计启示,用于开发未来的可解释ML工具以支持临床决策。
IEEE Trans Vis Comput Graph. 2022-1
Comput Biol Med. 2022-10
Early Hum Dev. 2020-11
BMC Med Inform Decis Mak. 2021-7-1
IEEE Trans Vis Comput Graph. 2022-1
Sultan Qaboos Univ Med J. 2025-5-2
Comput Graph Forum. 2023-6
NPJ Digit Med. 2023-5-22