文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

VBridge:连接特征与数据之间的点以解释医疗保健模型。

VBridge: Connecting the Dots Between Features and Data to Explain Healthcare Models.

作者信息

Cheng Furui, Liu Dongyu, Du Fan, Lin Yanna, Zytek Alexandra, Li Haomin, Qu Huamin, Veeramachaneni Kalyan

出版信息

IEEE Trans Vis Comput Graph. 2022 Jan;28(1):378-388. doi: 10.1109/TVCG.2021.3114836. Epub 2021 Dec 24.


DOI:10.1109/TVCG.2021.3114836
PMID:34596543
Abstract

Machine learning (ML) is increasingly applied to Electronic Health Records (EHRs) to solve clinical prediction tasks. Although many ML models perform promisingly, issues with model transparency and interpretability limit their adoption in clinical practice. Directly using existing explainable ML techniques in clinical settings can be challenging. Through literature surveys and collaborations with six clinicians with an average of 17 years of clinical experience, we identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence. Following an iterative design process, we further designed and developed VBridge, a visual analytics tool that seamlessly incorporates ML explanations into clinicians' decision-making workflow. The system includes a novel hierarchical display of contribution-based feature explanations and enriched interactions that connect the dots between ML features, explanations, and data. We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians, showing that visually associating model explanations with patients' situational records can help clinicians better interpret and use model predictions when making clinician decisions. We further derived a list of design implications for developing future explainable ML tools to support clinical decision-making.

摘要

机器学习(ML)越来越多地应用于电子健康记录(EHR),以解决临床预测任务。尽管许多ML模型表现出良好的前景,但模型透明度和可解释性方面的问题限制了它们在临床实践中的应用。在临床环境中直接使用现有的可解释ML技术可能具有挑战性。通过文献调查以及与六位平均拥有17年临床经验的临床医生合作,我们确定了三个关键挑战,包括临床医生对ML特征不熟悉、缺乏背景信息以及对队列水平证据的需求。经过迭代设计过程,我们进一步设计并开发了VBridge,这是一种可视化分析工具,可将ML解释无缝整合到临床医生的决策工作流程中。该系统包括基于贡献的特征解释的新颖分层显示以及丰富的交互,这些交互将ML特征、解释和数据之间的联系串联起来。我们通过两个案例研究以及对四位临床医生的专家访谈展示了VBridge的有效性,表明将模型解释与患者的情境记录进行可视化关联可以帮助临床医生在做出临床决策时更好地解释和使用模型预测。我们进一步得出了一系列设计启示,用于开发未来的可解释ML工具以支持临床决策。

相似文献

[1]
VBridge: Connecting the Dots Between Features and Data to Explain Healthcare Models.

IEEE Trans Vis Comput Graph. 2022-1

[2]
A qualitative research framework for the design of user-centered displays of explanations for machine learning model predictions in healthcare.

BMC Med Inform Decis Mak. 2020-10-8

[3]
Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology.

Can J Cardiol. 2022-2

[4]
Explainable, trustworthy, and ethical machine learning for healthcare: A survey.

Comput Biol Med. 2022-10

[5]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[6]
Patient similarity analytics for explainable clinical risk prediction.

BMC Med Inform Decis Mak. 2021-7-1

[7]
Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.

Lancet Digit Health. 2020-4

[8]
Sibyl: Understanding and Addressing the Usability Challenges of Machine Learning In High-Stakes Decision Making.

IEEE Trans Vis Comput Graph. 2022-1

[9]
Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.

Acad Emerg Med. 2016-3

[10]
Clinicians' Values and Preferences for Medication Adherence and Cost Clinical Decision Support in Primary Care: A Qualitative Study.

Appl Clin Inform. 2020-5

引用本文的文献

[1]
Enhancing Delirium Prediction and Prevention in Elderly Patients Through Machine Learning-Based Analysis.

Sultan Qaboos Univ Med J. 2025-5-2

[2]
A secure and scalable blockchain-based model for electronic health record management.

Sci Rep. 2025-4-4

[3]
TrajVis: a visual clinical decision support system to translate artificial intelligence trajectory models in the precision management of chronic kidney disease.

J Am Med Inform Assoc. 2024-11-1

[4]
A Patient Similarity Network (CHDmap) to Predict Outcomes After Congenital Heart Surgery: Development and Validation Study.

JMIR Med Inform. 2024-1-19

[5]
DASS Good: Explainable Data Mining of Spatial Cohort Data.

Comput Graph Forum. 2023-6

[6]
Solving the explainable AI conundrum by bridging clinicians' needs and developers' goals.

NPJ Digit Med. 2023-5-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索