Suppr超能文献

酶响应环肽的水凝胶形成。

Hydrogel Formation with Enzyme-Responsive Cyclic Peptides.

机构信息

Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.

Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA.

出版信息

Methods Mol Biol. 2022;2371:427-448. doi: 10.1007/978-1-0716-1689-5_23.

Abstract

Self-assembling peptides (SAPs), which form hydrogels through physical cross-linking of soluble structures, are an intriguing class of materials that have been applied as tissue engineering scaffolds and drug delivery vehicles. For feasible application of these tissue mimetics via minimally invasive delivery, their bulk mechanical properties must be compatible with current delivery strategies. However, injectable SAPs which possess shear-thinning capacity, as well as the ability to reassemble after cessation of shearing can be technically challenging to generate. Many SAPs either clog the high-gauge needle/catheter at high concentration during delivery or are incapable of reassembly following delivery. In this chapter, we provide a detailed protocol for topological control of enzyme-responsive peptide-based hydrogels that enable the user to access both advantages. These materials are formulated as sterically constrained cyclic peptide progelators to temporarily disrupt self-assembly during injection-based delivery, which avoids issues with clogging of needles and catheters as well as nearby vasculature. Proteolytic cleavage by enzymes produced at the target tissue induces progelator linearization and hydrogelation. The scope of this approach is demonstrated by their ability to flow through a catheter without clogging and activated gelation upon exposure to target enzymes.

摘要

自组装肽(SAPs)通过可溶性结构的物理交联形成水凝胶,是一类很有前途的材料,已被用作组织工程支架和药物输送载体。为了通过微创输送实现这些组织模拟物的可行应用,其整体机械性能必须与当前的输送策略相兼容。然而,具有剪切稀化能力的可注射 SAP,以及在停止剪切后能够重新组装的能力,在技术上具有挑战性。许多 SAP 在输送过程中,要么在高浓度下堵塞高规格的针/导管,要么在输送后无法重新组装。在本章中,我们提供了一种酶响应肽基水凝胶的拓扑控制的详细方案,使使用者能够同时利用这两个优势。这些材料被设计为空间受限的环状肽预制凝胶剂,以在基于注射的输送过程中暂时破坏自组装,从而避免了堵塞针和导管以及附近血管的问题。目标组织产生的酶进行的蛋白水解切割诱导预制凝胶剂的线性化和凝胶化。这种方法的应用范围通过它们能够在不堵塞的情况下通过导管流动,以及在暴露于目标酶时激活凝胶化来证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca41/11042486/9bec7fcb9f87/nihms-1865433-f0001.jpg

相似文献

1
Hydrogel Formation with Enzyme-Responsive Cyclic Peptides.酶响应环肽的水凝胶形成。
Methods Mol Biol. 2022;2371:427-448. doi: 10.1007/978-1-0716-1689-5_23.
4
pH-Responsive Charge-Conversion Progelator Peptides.pH响应性电荷转换前凝胶剂肽
Adv Funct Mater. 2021 Mar 24;31(13). doi: 10.1002/adfm.202007733. Epub 2021 Jan 14.
6
Design of Nanocomposite Injectable Hydrogels for Minimally Invasive Surgery.用于微创手术的纳米复合可注射水凝胶的设计。
Acc Chem Res. 2019 Aug 20;52(8):2101-2112. doi: 10.1021/acs.accounts.9b00114. Epub 2019 Jul 10.

本文引用的文献

2
UV-responsive cyclic peptide progelator bioinks.UV 响应型环肽原凝胶生物墨水。
Faraday Discuss. 2019 Oct 30;219(0):44-57. doi: 10.1039/c9fd00026g.
6
Methods To Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials.评估用于可注射生物材料的剪切变稀水凝胶的方法。
ACS Biomater Sci Eng. 2017 Dec 11;3(12):3146-3160. doi: 10.1021/acsbiomaterials.7b00734. Epub 2017 Nov 7.
9
Biosynthetic Polymers as Functional Materials.作为功能材料的生物合成聚合物
Macromolecules. 2016 Jun 28;49(12):4379-4394. doi: 10.1021/acs.macromol.6b00439. Epub 2016 Jun 21.
10
The road to the synthesis of "difficult peptides".“困难肽”的合成之路。
Chem Soc Rev. 2016 Feb 7;45(3):631-54. doi: 10.1039/c5cs00680e. Epub 2015 Nov 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验