Chang Yukai, Li Penghui, Li Lei, Chang Shaopeng, Huo Yingjie, Mu Congpu, Nie Anmin, Xiang Jianyong, Xue Tianyu, Zhai Kun, Wang Bochong, Zhao Zhisheng, Yu Dongli, Wen Fusheng, Liu Zhongyuan, Tian Yongjun
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
Northwest Institute for Non-ferrous Metal Research, Xian 710016, China.
ACS Appl Mater Interfaces. 2021 Oct 13;13(40):47560-47571. doi: 10.1021/acsami.1c12549. Epub 2021 Oct 1.
GeP, as the most representative phosphorus-based material in two-dimensional layered phosphorous compounds, has shown a fairly bright application prospect in the field of energy storage because of its ultrahigh electrical conductivity. However, high-yield exfoliation methods and effective structure construction strategies for GeP nanosheets are still missing, which completely restricts the further application of GeP-based nanocomposites. Here, we not only improved the yield of GeP nanosheets by a liquid nitrogen-assisted liquid-phase exfoliation technique but also constructed the GeP@RuO nanocomposites with the 0D/2D heterostructure by in situ introduction of ultrafine RuO nanoparticles on highly conductive GeP nanosheets using a simple hydrothermal synthesis method, and then applying it to micro-supercapacitors (MSCs) as electrode materials through a mask-assisted vacuum filtration technique. It is precisely because of the synergy of the electrical double-layer material, GeP nanosheets and the pseudocapacitance material RuO nanoparticles that endows the GeP@RuO electrode with outstanding electrochemical performance in micro-supercapacitors with a large specific capacitance of 129.5 mF cm/107.9 F cm, high energy density of 17.98 μWh cm, remarkable long-term cycling stability with 98.4% capacitance retention after 10 000 cycles, the exceptional mechanical stability, outstanding environmental stability, and excellent integration features. This work opens up a new avenue to construct GeP-based nanocomposites as a most promising novel electrode material for practical application in flexible portable/wearable micro-nanoelectronic devices.
锗磷(GeP)作为二维层状磷化合物中最具代表性的磷基材料,因其超高的电导率在储能领域展现出相当光明的应用前景。然而,锗磷纳米片的高产率剥离方法和有效的结构构建策略仍然缺乏,这完全限制了锗磷基纳米复合材料的进一步应用。在此,我们不仅通过液氮辅助液相剥离技术提高了锗磷纳米片的产率,还利用简单的水热合成方法在高导电性的锗磷纳米片上原位引入超细的RuO纳米颗粒,构建了具有0D/2D异质结构的GeP@RuO纳米复合材料,然后通过掩膜辅助真空过滤技术将其作为电极材料应用于微型超级电容器(MSC)。正是由于双电层材料锗磷纳米片和赝电容材料RuO纳米颗粒的协同作用,赋予了GeP@RuO电极在微型超级电容器中出色的电化学性能,其具有129.5 mF cm/107.9 F cm的大比电容、17.98 μWh cm的高能量密度、在10000次循环后电容保持率为98.4%的显著长期循环稳定性、优异的机械稳定性、出色的环境稳定性和良好的集成特性。这项工作开辟了一条构建锗磷基纳米复合材料的新途径,使其成为一种最有前途的新型电极材料,可实际应用于柔性便携式/可穿戴微纳电子器件。